Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15937048541931874097083912 ~2019
1593907548475100...55104114 2023
15939371474331878742948712 ~2019
15940708052331881416104712 ~2019
15941675729931883351459912 ~2019
15942485813931884971627912 ~2019
15942555326331885110652712 ~2019
15944448542331888897084712 ~2019
15945720025131891440050312 ~2019
15947257501131894515002312 ~2019
15947262569931894525139912 ~2019
15948547087131897094174312 ~2019
1594945272111435...44899114 2024
15949936439931899872879912 ~2019
15950292415131900584830312 ~2019
15950929538331901859076712 ~2019
15952060765131904121530312 ~2019
1595338805771222...52198315 2023
15953481205131906962410312 ~2019
15954279541131908559082312 ~2019
15955765352331911530704712 ~2019
15958358879931916717759912 ~2019
1595904097573415...68799914 2023
15959895755931919791511912 ~2019
15961314655131922629310312 ~2019
Exponent Prime Factor Dig. Year
15962548327131925096654312 ~2019
15962662541931925325083912 ~2019
1596416902939450...65345714 2025
1596585330591660...43813714 2024
15966815605131933631210312 ~2019
15968361944331936723888712 ~2019
1596956566932564...64895915 2023
15970822307931941644615912 ~2019
15971561117931943122235912 ~2019
15971933185131943866370312 ~2019
15972104827131944209654312 ~2019
15972494971131944989942312 ~2019
1597404163693025...60288715 2023
1597410384912683...46648914 2024
15975011537931950023075912 ~2019
15976597562331953195124712 ~2019
15976606328331953212656712 ~2019
15977680262331955360524712 ~2019
15977701579131955403158312 ~2019
15979409366331958818732712 ~2019
15979995389931959990779912 ~2019
15980459072331960918144712 ~2019
15982337357931964674715912 ~2019
15982375955931964751911912 ~2019
15982712609931965425219912 ~2019
Exponent Prime Factor Dig. Year
15983950400331967900800712 ~2019
1598477769171662...79936914 2024
15984914123931969828247912 ~2019
15985613407131971226814312 ~2019
15986032837131972065674312 ~2019
15986613632331973227264712 ~2019
15986668523931973337047912 ~2019
15988509476331977018952712 ~2019
15989228395131978456790312 ~2019
15990708926331981417852712 ~2019
15991723100331983446200712 ~2019
15992704460331985408920712 ~2019
15993214837131986429674312 ~2019
15993736118331987472236712 ~2019
15994635338331989270676712 ~2019
15996782851131993565702312 ~2019
15996881725131993763450312 ~2019
15996950378331993900756712 ~2019
15997873580331995747160712 ~2019
15998196031131996392062312 ~2019
15998524031931997048063912 ~2019
16000728272332001456544712 ~2019
16001162981932002325963912 ~2019
16001654047132003308094312 ~2019
16003066717132006133434312 ~2019
Exponent Prime Factor Dig. Year
1600354266132400...99195114 2024
16004120657932008241315912 ~2019
16005264055132010528110312 ~2019
16005440269132010880538312 ~2019
16005611876332011223752712 ~2019
16007511605932015023211912 ~2019
16009153417132018306834312 ~2019
16009280852332018561704712 ~2019
16009539181132019078362312 ~2019
16011077411932022154823912 ~2019
16011093386332022186772712 ~2019
16011793634332023587268712 ~2019
16012320803932024641607912 ~2019
16013338681132026677362312 ~2019
16013357096332026714192712 ~2019
16013868641932027737283912 ~2019
16014522413932029044827912 ~2019
16014580015132029160030312 ~2019
16015321904332030643808712 ~2019
16015775000332031550000712 ~2019
16016692531132033385062312 ~2019
16018366979932036733959912 ~2019
16019525731132039051462312 ~2019
16021361791132042723582312 ~2019
16022620058332045240116712 ~2019
Home
4.768.925 digits
e-mail
25-05-04