Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
21231974066342463948132712 ~2019
21232926206342465852412712 ~2019
21235862054342471724108712 ~2019
21238559750342477119500712 ~2019
21243263429942486526859912 ~2019
2124459705432549...46516114 2024
21244781888342489563776712 ~2019
21245937512342491875024712 ~2019
21249384206342498768412712 ~2019
21251325749942502651499912 ~2019
21251456249942502912499912 ~2019
21251973578342503947156712 ~2019
2125207451891270...62302315 2023
21252547409942505094819912 ~2019
2125443488294080...97516914 2023
21255040976342510081952712 ~2019
21256873217942513746435912 ~2019
21257229083942514458167912 ~2019
21257646308342515292616712 ~2019
21258739307942517478615912 ~2019
21259783139942519566279912 ~2019
21260896993142521793986312 ~2019
2126470520773912...58216914 2024
21266073680342532147360712 ~2019
21266382488342532764976712 ~2019
Exponent Prime Factor Dig. Year
21266451494342532902988712 ~2019
21266721685142533443370312 ~2019
21271447709942542895419912 ~2019
21277379012342554758024712 ~2019
2127778154332681...74455914 2024
21278935727942557871455912 ~2019
21278988653942557977307912 ~2019
21281538257942563076515912 ~2019
21281739986342563479972712 ~2019
21284997329942569994659912 ~2019
21287655539942575311079912 ~2019
21288524309942577048619912 ~2019
21290402603942580805207912 ~2019
21290637431942581274863912 ~2019
21290702270342581404540712 ~2019
2129123775472427...04035914 2024
2129178835313747...50145714 2024
21292325168342584650336712 ~2019
21293004755942586009511912 ~2019
21293116319942586232639912 ~2019
21300278033942600556067912 ~2019
21301485248342602970496712 ~2019
21302204309942604408619912 ~2019
21304662584342609325168712 ~2019
21306559961942613119923912 ~2019
Exponent Prime Factor Dig. Year
21307840747142615681494312 ~2019
21308570347142617140694312 ~2019
2130865084873068...22212914 2024
21308877794342617755588712 ~2019
21310173593942620347187912 ~2019
21311818435142623636870312 ~2019
21313940204342627880408712 ~2019
21314074547942628149095912 ~2019
21314433209942628866419912 ~2019
21315650923142631301846312 ~2019
21316152671942632305343912 ~2019
21316458883142632917766312 ~2019
2131677904435158...28720714 2024
2131730463891342...22507115 2024
21317643767942635287535912 ~2019
21318671243942637342487912 ~2019
21319939313942639878627912 ~2019
21322979209142645958418312 ~2019
21324007039142648014078312 ~2019
21324232543142648465086312 ~2019
21324627200342649254400712 ~2019
21327220789142654441578312 ~2019
21328774385942657548771912 ~2019
21329166913142658333826312 ~2019
2133108771597551...51428714 2023
Exponent Prime Factor Dig. Year
2133163401972559...82364114 2024
21331803949142663607898312 ~2019
21334090388342668180776712 ~2019
21334731749942669463499912 ~2019
21334943360342669886720712 ~2019
21337731992342675463984712 ~2019
21340829702342681659404712 ~2019
21340969463942681938927912 ~2019
21343513280342687026560712 ~2019
21344125346342688250692712 ~2019
21346636241942693272483912 ~2019
21348710576342697421152712 ~2019
21348929539142697859078312 ~2019
21350165756342700331512712 ~2019
21351114191942702228383912 ~2019
21352386533942704773067912 ~2019
21353311705142706623410312 ~2019
21354010574342708021148712 ~2019
21354976004342709952008712 ~2019
21356717609942713435219912 ~2019
21358496921942716993843912 ~2019
2135889100373716...34643914 2024
21366749741942733499483912 ~2019
21369027416342738054832712 ~2019
21369791119142739582238312 ~2019
Home
4.724.182 digits
e-mail
25-04-13