Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16025169788332050339576712 ~2019
1602632621773538...88681715 2023
16026731725132053463450312 ~2019
16027719421132055438842312 ~2019
16027867855132055735710312 ~2019
16029853934332059707868712 ~2019
16031663089132063326178312 ~2019
16033017269932066034539912 ~2019
16036998445132073996890312 ~2019
16037490391132074980782312 ~2019
16039780069132079560138312 ~2019
16041116539132082233078312 ~2019
16041979949932083959899912 ~2019
16042599055132085198110312 ~2019
16045960169932091920339912 ~2019
16047368995132094737990312 ~2019
16047649481932095298963912 ~2019
16048130765932096261531912 ~2019
16049940755932099881511912 ~2019
16050947375932101894751912 ~2019
16051329775132102659550312 ~2019
16051693052332103386104712 ~2019
16051697909932103395819912 ~2019
16053098315932106196631912 ~2019
16054672507132109345014312 ~2019
Exponent Prime Factor Dig. Year
16055647333132111294666312 ~2019
16055682089932111364179912 ~2019
16059078872332118157744712 ~2019
16059676838332119353676712 ~2019
16059706177132119412354312 ~2019
16060080091132120160182312 ~2019
16063863613132127727226312 ~2019
16066201577932132403155912 ~2019
16066639634332133279268712 ~2019
16067044307932134088615912 ~2019
16068467261932136934523912 ~2019
16071589577932143179155912 ~2019
16071889387132143778774312 ~2019
16072163695132144327390312 ~2019
16073270507932146541015912 ~2019
16073927264332147854528712 ~2019
16074457520332148915040712 ~2019
16074511304332149022608712 ~2019
16075780877932151561755912 ~2019
16076251505932152503011912 ~2019
16076290430332152580860712 ~2019
16076670085132153340170312 ~2019
16076811473932153622947912 ~2019
16077040267132154080534312 ~2019
16077155915932154311831912 ~2019
Exponent Prime Factor Dig. Year
16078224397132156448794312 ~2019
16079072549932158145099912 ~2019
16079534161132159068322312 ~2019
16080600949132161201898312 ~2019
16082305460332164610920712 ~2019
16083978925132167957850312 ~2019
1608684133371103...54918315 2023
16086933584332173867168712 ~2019
16087958660332175917320712 ~2019
16090042793932180085587912 ~2019
1609138349691750...44627315 2023
16092351179932184702359912 ~2019
16093688051932187376103912 ~2019
16093964609932187929219912 ~2019
16094659334332189318668712 ~2019
1609625526834249...90831314 2024
16096760755132193521510312 ~2019
1609738569475698...35923914 2024
16097486687932194973375912 ~2019
16102182247132204364494312 ~2019
16103217079132206434158312 ~2019
16103300369932206600739912 ~2019
16103449051132206898102312 ~2019
16104493735132208987470312 ~2019
16104512624332209025248712 ~2019
Exponent Prime Factor Dig. Year
16104918829132209837658312 ~2019
16105458977932210917955912 ~2019
16106502593932213005187912 ~2019
16108825243132217650486312 ~2019
16110368711932220737423912 ~2019
16110473665132220947330312 ~2019
16116024188332232048376712 ~2019
16117483148332234966296712 ~2019
16121512919932243025839912 ~2019
16122767876332245535752712 ~2019
16124306480332248612960712 ~2019
16127051876332254103752712 ~2019
16127809604332255619208712 ~2019
16128975553132257951106312 ~2019
16130272171132260544342312 ~2019
16130957657932261915315912 ~2019
16132213988332264427976712 ~2019
16132705093132265410186312 ~2019
16132779374332265558748712 ~2019
16134403717132268807434312 ~2019
16136004305932272008611912 ~2019
16136175637132272351274312 ~2019
16136990696332273981392712 ~2019
16137028343932274056687912 ~2019
16137558494332275116988712 ~2019
Home
4.768.925 digits
e-mail
25-05-04