Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1584089416311752...44388715 2023
15841184881131682369762312 ~2018
15841617247131683234494312 ~2018
15842523881931685047763912 ~2018
15843197261931686394523912 ~2018
15843937117131687874234312 ~2018
15844819165131689638330312 ~2018
15844849400331689698800712 ~2018
15846318974331692637948712 ~2018
1584648262513042...64019314 2024
15850030321131700060642312 ~2018
15852288740331704577480712 ~2018
15852864703131705729406312 ~2018
15853886767131707773534312 ~2018
15853952293131707904586312 ~2018
1585408545171087...19866315 2023
15856979861931713959723912 ~2018
15857859925131715719850312 ~2018
15858242029131716484058312 ~2018
15858843193131717686386312 ~2018
15859552715931719105431912 ~2018
15859824071931719648143912 ~2018
15860522444331721044888712 ~2018
1586089371592664...44271314 2024
15861199969131722399938312 ~2018
Exponent Prime Factor Dig. Year
15863867216331727734432712 ~2018
15866132999931732265999912 ~2018
1586621461094823...41713714 2024
15866764333131733528666312 ~2018
15867859559931735719119912 ~2018
15867947465931735894931912 ~2018
1586798139792161...63939915 2024
15869439878331738879756712 ~2018
15870523513131741047026312 ~2018
15871214923131742429846312 ~2018
15871379498331742758996712 ~2018
15871498801131742997602312 ~2018
15872013989931744027979912 ~2018
15873110897931746221795912 ~2018
15873351697131746703394312 ~2018
15874512241131749024482312 ~2018
15874941413931749882827912 ~2018
1587735468711247...84060715 2023
15877444754331754889508712 ~2018
15878175577131756351154312 ~2018
15880697365131761394730312 ~2018
15881137196331762274392712 ~2018
15882085951131764171902312 ~2018
15882502784331765005568712 ~2018
15882954560331765909120712 ~2018
Exponent Prime Factor Dig. Year
15884100143931768200287912 ~2018
15884210960331768421920712 ~2018
15884864216331769728432712 ~2018
15886882202331773764404712 ~2018
15888314213931776628427912 ~2018
15888384743931776769487912 ~2018
15889794167931779588335912 ~2018
15890421566331780843132712 ~2018
15890698736331781397472712 ~2018
15891342235131782684470312 ~2018
15892297115931784594231912 ~2018
15893414567931786829135912 ~2018
15893477005131786954010312 ~2018
1589409732073592...94478314 2023
15895294897131790589794312 ~2018
15898346732331796693464712 ~2018
15899663078331799326156712 ~2018
1590151143674452...02276114 2025
15902365370331804730740712 ~2018
15903427262331806854524712 ~2018
15904566602331809133204712 ~2018
15905484637131810969274312 ~2018
15907920119931815840239912 ~2018
15908547325131817094650312 ~2018
15909253733931818507467912 ~2018
Exponent Prime Factor Dig. Year
15909482771931818965543912 ~2018
15912756590331825513180712 ~2018
15913348796331826697592712 ~2018
15913997371131827994742312 ~2018
15914327539131828655078312 ~2018
15914595499131829190998312 ~2018
15915057137931830114275912 ~2018
15918057685131836115370312 ~2019
15918363763131836727526312 ~2019
15920135597931840271195912 ~2019
15920549492331841098984712 ~2019
15922999111131845998222312 ~2019
15923098403931846196807912 ~2019
15924048311931848096623912 ~2019
15924737642331849475284712 ~2019
15927061895931854123791912 ~2019
15928240889931856481779912 ~2019
15928619651931857239303912 ~2019
15928768082331857536164712 ~2019
15930319574331860639148712 ~2019
1593133019113823...45864114 2023
15931720153131863440306312 ~2019
15933490280331866980560712 ~2019
15935722352331871444704712 ~2019
15936601465131873202930312 ~2019
Home
4.768.925 digits
e-mail
25-05-04