Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
40449477800380898955600712 ~2022
40453471838380906943676712 ~2022
40455440821180910881642312 ~2022
40456447241980912894483912 ~2022
40464988832380929977664712 ~2022
40465694701180931389402312 ~2022
40465911023980931822047912 ~2022
40466951933980933903867912 ~2022
40467864719980935729439912 ~2022
40468236581980936473163912 ~2022
40469913163180939826326312 ~2022
40472460428380944920856712 ~2022
40474751753980949503507912 ~2022
40479149888380958299776712 ~2022
40481267869180962535738312 ~2022
40484788802380969577604712 ~2022
4048491513532850...55251315 2025
40490619013180981238026312 ~2022
40493026643980986053287912 ~2022
40495406119180990812238312 ~2022
40497215369980994430739912 ~2022
40499053694380998107388712 ~2022
40499061473980998122947912 ~2022
40500609431981001218863912 ~2022
40501836986381003673972712 ~2022
Exponent Prime Factor Dig. Year
40513920674381027841348712 ~2022
40514109823181028219646312 ~2022
40516132979981032265959912 ~2022
40523497033181046994066312 ~2022
40523569001981047138003912 ~2022
40524816595181049633190312 ~2022
4052503433218996...21726314 2025
40527129392381054258784712 ~2022
40527247633181054495266312 ~2022
40528997149181057994298312 ~2022
4053064840674571...02757715 2025
4054880246631240...54687915 2025
40554147044381108294088712 ~2022
40556319649181112639298312 ~2022
40563702047981127404095912 ~2022
40565188103981130376207912 ~2022
40566260623181132521246312 ~2022
4057064211299087...33289714 2025
40573643705981147287411912 ~2022
40577152217981154304435912 ~2022
40583189600381166379200712 ~2022
40585887869981171775739912 ~2022
40586015891981172031783912 ~2022
40591236344381182472688712 ~2022
40591700474381183400948712 ~2022
Exponent Prime Factor Dig. Year
40593458305181186916610312 ~2022
40600114099181200228198312 ~2022
4060129223391396...28461715 2025
40611077936381222155872712 ~2022
40611441829181222883658312 ~2022
40619461273181238922546312 ~2022
40626244496381252488992712 ~2022
40632502625981265005251912 ~2022
40634541805181269083610312 ~2022
40636967192381273934384712 ~2022
40636998133181273996266312 ~2022
40639284494381278568988712 ~2022
40641712297181283424594312 ~2022
40643301889181286603778312 ~2022
40651114979981302229959912 ~2022
40652712899981305425799912 ~2022
40656275495981312550991912 ~2022
40661346551981322693103912 ~2022
40664125652381328251304712 ~2022
40665364097981330728195912 ~2022
40670214062381340428124712 ~2022
40670257481981340514963912 ~2022
40673336252381346672504712 ~2022
40679391062381358782124712 ~2022
40688271463181376542926312 ~2022
Exponent Prime Factor Dig. Year
40689686017181379372034312 ~2022
40692561332381385122664712 ~2022
40696403483981392806967912 ~2022
40697805029981395610059912 ~2022
40698556121981397112243912 ~2022
40699145081981398290163912 ~2022
40700514049181401028098312 ~2022
40705743320381411486640712 ~2022
40707308773181414617546312 ~2022
40707891674381415783348712 ~2022
40710472946381420945892712 ~2022
40711540298381423080596712 ~2022
40713204521981426409043912 ~2022
40714626485981429252971912 ~2022
40716854485181433708970312 ~2022
40718644352381437288704712 ~2022
40724165273981448330547912 ~2022
40725116846381450233692712 ~2022
40734481694381468963388712 ~2022
40735090853981470181707912 ~2022
40739188016381478376032712 ~2022
40740354109181480708218312 ~2022
40746691207181493382414312 ~2022
40752241448381504482896712 ~2022
40754129720381508259440712 ~2022
Home
4.888.230 digits
e-mail
25-06-29