Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10581419623121162839246312 ~2017
10582248960163493493760712 ~2018
10582349762321164699524712 ~2017
10582900142321165800284712 ~2017
10582948640321165897280712 ~2017
10583484317363500905903912 ~2018
10584664766321169329532712 ~2017
10584995677763509974066312 ~2018
10585858736321171717472712 ~2017
10585884685121171769370312 ~2017
10586872657121173745314312 ~2017
10586894491121173788982312 ~2017
10588826217763532957306312 ~2018
1058905988878577...09847114 2023
1059020489712719...75752915 2025
10590279379121180558758312 ~2017
10590597721121181195442312 ~2017
10590988740163545932440712 ~2018
10591312742321182625484712 ~2017
10591433756321182867512712 ~2017
10591633409921183266819912 ~2017
10591891799921183783599912 ~2017
10592181493121184362986312 ~2017
10592303813921184607627912 ~2017
10592550809921185101619912 ~2017
Exponent Prime Factor Dig. Year
10592651924321185303848712 ~2017
1059271211474237...45880114 2024
10594165202321188330404712 ~2017
10594642781921189285563912 ~2017
10594974764321189949528712 ~2017
10595039092163570234552712 ~2018
10596038156321192076312712 ~2017
10597014902321194029804712 ~2017
10597541983121195083966312 ~2017
10598009312321196018624712 ~2017
10598381347121196762694312 ~2017
10598567597921197135195912 ~2017
10598761243121197522486312 ~2017
10598978431121197956862312 ~2017
10599659725121199319450312 ~2017
10600421531921200843063912 ~2017
10601436659921202873319912 ~2017
10602059780321204119560712 ~2017
10602127307921204254615912 ~2017
10602436868321204873736712 ~2017
10602518748163615112488712 ~2018
10602880838321205761676712 ~2017
10602939379121205878758312 ~2017
10604134208321208268416712 ~2017
10604210786321208421572712 ~2017
Exponent Prime Factor Dig. Year
10606263059921212526119912 ~2017
10606477321121212954642312 ~2017
10606917259121213834518312 ~2017
10606967137121213934274312 ~2017
10607012655763642075934312 ~2018
10607663123921215326247912 ~2017
10607818889921215637779912 ~2017
10610179255121220358510312 ~2017
10610291813921220583627912 ~2017
10610700089921221400179912 ~2017
10611514309121223028618312 ~2017
10611576803921223153607912 ~2017
10611877003121223754006312 ~2017
10611894061121223788122312 ~2017
10612253299121224506598312 ~2017
10612495339121224990678312 ~2017
10613337097121226674194312 ~2017
10614456895121228913790312 ~2017
10614675863921229351727912 ~2017
10614859315121229718630312 ~2017
10614925937921229851875912 ~2017
10615090681121230181362312 ~2017
10615225009121230450018312 ~2017
10616688218321233376436712 ~2017
10618197356321236394712712 ~2017
Exponent Prime Factor Dig. Year
10618944575363713667451912 ~2018
10619449411121238898822312 ~2017
10620582326321241164652712 ~2017
10622031948163732191688712 ~2018
10622879963921245759927912 ~2017
10623096893921246193787912 ~2017
10623892676321247785352712 ~2017
10624418665121248837330312 ~2017
10624952477921249904955912 ~2017
10625525233121251050466312 ~2017
10625561071121251122142312 ~2017
10626520922321253041844712 ~2017
10626748465763760490794312 ~2018
10627214821763763288930312 ~2018
10627380649121254761298312 ~2017
10627913543921255827087912 ~2017
10628441873921256883747912 ~2017
10629499413763776996482312 ~2018
10630202695121260405390312 ~2017
10630792448321261584896712 ~2017
10631351414321262702828712 ~2017
10632006311921264012623912 ~2017
10632341227121264682454312 ~2017
10633500401921267000803912 ~2017
10633508507921267017015912 ~2017
Home
4.768.925 digits
e-mail
25-05-04