Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7427882148144567292888712 ~2017
7428167929114856335858312 ~2016
7428600431344571602587912 ~2017
7428779149974287791499112 ~2018
7428952967914857905935912 ~2016
7429149715114858299430312 ~2016
7429438849114858877698312 ~2016
7430666000314861332000712 ~2016
7432022867914864045735912 ~2016
7432402075344594412451912 ~2017
7432488091114864976182312 ~2016
7432738660374327386603112 ~2018
7432796413114865592826312 ~2016
7433615843914867231687912 ~2016
7433718694159469749552912 ~2017
7434089216314868178432712 ~2016
7434366917344606201503912 ~2017
743471052773390...00631314 2024
7435046869114870093738312 ~2016
7435125617914870251235912 ~2016
7435149037114870298074312 ~2016
7435150481959481203855312 ~2017
7435207796314870415592712 ~2016
7435430917114870861834312 ~2016
7435797038314871594076712 ~2016
Exponent Prime Factor Dig. Year
7435990283914871980567912 ~2016
7436847363744621084182312 ~2017
7437297968314874595936712 ~2016
7437315001114874630002312 ~2016
743742626891963...34989714 2023
7437799280314875598560712 ~2016
7438199485744629196914312 ~2017
7438329971914876659943912 ~2016
7438641764314877283528712 ~2016
7438805927914877611855912 ~2016
7439403763974394037639112 ~2018
7440353425114880706850312 ~2016
7440848213914881696427912 ~2016
7440916351114881832702312 ~2016
7441449733114882899466312 ~2016
7441546323744649277942312 ~2017
744227151613505...40831115 2023
7442928344314885856688712 ~2016
7443063020314886126040712 ~2016
7443117545914886235091912 ~2016
7443138835114886277670312 ~2016
7443731534314887463068712 ~2016
7443874559914887749119912 ~2016
7444092716314888185432712 ~2016
7444196069914888392139912 ~2016
Exponent Prime Factor Dig. Year
7444447718314888895436712 ~2016
7444941248314889882496712 ~2016
7444966873114889933746312 ~2016
7445364236314890728472712 ~2016
7445507153914891014307912 ~2016
7445989817344675938903912 ~2017
7446157517914892315035912 ~2016
7446605420314893210840712 ~2016
744717900472502...45579314 2024
7447356158314894712316712 ~2016
7448077802314896155604712 ~2016
7448186627914896373255912 ~2016
7448404220314896808440712 ~2016
7448750366314897500732712 ~2016
7449147184144694883104712 ~2017
7449705570144698233420712 ~2017
7449740408314899480816712 ~2016
7449746653114899493306312 ~2016
7450088959114900177918312 ~2016
7450334327914900668655912 ~2016
7450451054314900902108712 ~2016
7451277100159610216800912 ~2017
7451793911344710763467912 ~2017
7452653146144715918876712 ~2017
7453401579744720409478312 ~2017
Exponent Prime Factor Dig. Year
7453579117114907158234312 ~2016
7453639310314907278620712 ~2016
7454015693959632125551312 ~2017
7454383909114908767818312 ~2016
7454459744314908919488712 ~2016
7454548112314909096224712 ~2016
7454923964314909847928712 ~2016
7455175489114910350978312 ~2016
7455250976314910501952712 ~2016
7455318666144731911996712 ~2017
7455517032144733102192712 ~2017
7456205953114912411906312 ~2016
7456923991114913847982312 ~2016
7457516930314915033860712 ~2016
7457519693914915039387912 ~2016
7457576767744745460606312 ~2017
7457622614314915245228712 ~2016
7457961101914915922203912 ~2016
7459043779114918087558312 ~2016
7459165171159673321368912 ~2017
7459493240314918986480712 ~2016
7460055945744760335674312 ~2017
7460262884314920525768712 ~2016
7460314427914920628855912 ~2016
7460375833114920751666312 ~2016
Home
4.724.182 digits
e-mail
25-04-13