Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
114980258816898815528711 ~2011
114985056592299701131911 ~2010
114988238816899294328711 ~2011
114994129376899647762311 ~2011
115001042632300020852711 ~2010
115002841216900170472711 ~2011
115004927392300098547911 ~2010
115005171112300103422311 ~2010
115010516032300210320711 ~2010
115015621616900937296711 ~2011
115015761112300315222311 ~2010
115017313792300346275911 ~2010
115029641992300592839911 ~2010
115032168112300643362311 ~2010
115039641592300792831911 ~2010
115040689312300813786311 ~2010
115041197032300823940711 ~2010
115046636032300932720711 ~2010
115047774232300955484711 ~2010
115050590032301011800711 ~2010
115058305936903498355911 ~2011
1150591413118409462609712 ~2012
1150643418711506434187112 ~2011
115072271392301445427911 ~2010
115072300619205784048911 ~2011
Exponent Prime Factor Dig. Year
115072427536904345651911 ~2011
115072725592301454511911 ~2010
115078381199206270495311 ~2011
115082771392301655427911 ~2010
115086099712301721994311 ~2010
115086915592301738311911 ~2010
115086932632301738652711 ~2010
1150973065755246707153712 ~2013
1150980184318415682948912 ~2012
1151064510118417032161712 ~2012
1151075276336834408841712 ~2013
115108190579208655245711 ~2011
115111676632302233532711 ~2010
115117467776907048066311 ~2011
115119358336907161499911 ~2011
115120791479209663317711 ~2011
115123413712302468274311 ~2010
115123845712302476914311 ~2010
115147364512302947290311 ~2010
115147809112302956182311 ~2010
115148039992302960799911 ~2010
1151484147734544524431112 ~2012
115149505192302990103911 ~2010
115150072432303001448711 ~2010
115151394592303027891911 ~2010
Exponent Prime Factor Dig. Year
115154567032303091340711 ~2010
1151614245718425827931312 ~2012
115164597232303291944711 ~2010
115166715832303334316711 ~2010
115175960032303519200711 ~2010
115177525912303550518311 ~2010
115181480219214518416911 ~2011
115182379432303647588711 ~2010
115187987992303759759911 ~2010
115188644992303772899911 ~2010
1151973454318431575268912 ~2012
1152003377920736060802312 ~2012
115200579592304011591911 ~2010
115201457512304029150311 ~2010
115205477936912328675911 ~2011
115208614192304172283911 ~2010
115216304999217304399311 ~2011
115219104832304382096711 ~2010
115222711192304454223911 ~2010
115223258336913395499911 ~2011
115224375176913462510311 ~2011
115225594792304511895911 ~2010
115238138032304762760711 ~2010
115241502592304830051911 ~2010
1152446899920744044198312 ~2012
Exponent Prime Factor Dig. Year
115251658432305033168711 ~2010
115251889912305037798311 ~2010
115255507192305110143911 ~2010
115261337632305226752711 ~2010
115265041679221203333711 ~2011
115265191432305303828711 ~2010
115271225392305424507911 ~2010
115275663112305513262311 ~2010
115279556512305591130311 ~2010
115282555912305651118311 ~2010
115288472992305769459911 ~2010
115290384832305807696711 ~2010
1153004835734590145071112 ~2012
115302875392306057507911 ~2010
115303117312306062346311 ~2010
115303780816918226848711 ~2011
115310797432306215948711 ~2010
115311902992306238059911 ~2010
115318480376919108822311 ~2011
115318762312306375246311 ~2010
115319684392306393687911 ~2010
115320922816919255368711 ~2011
115325026499226002119311 ~2011
115328957392306579147911 ~2010
115332357376919941442311 ~2011
Home
5.247.179 digits
e-mail
25-12-14