Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
987156722412428...37128714 2024
9871713970159230283820712 ~2018
9871923220159231539320712 ~2018
9872085284319744170568712 ~2017
987319972913811...95432714 2024
9873222551919746445103912 ~2017
9873585458319747170916712 ~2017
9873612638319747225276712 ~2017
9874146727119748293454312 ~2017
9875598113919751196227912 ~2017
9875618618319751237236712 ~2017
9876716531919753433063912 ~2017
9876716699919753433399912 ~2017
9876957371919753914743912 ~2017
9877074523119754149046312 ~2017
9877220096319754440192712 ~2017
9877282511359263695067912 ~2018
9877681385359266088311912 ~2018
9877887583119755775166312 ~2017
9878696096319757392192712 ~2017
9879535934319759071868712 ~2017
9879698045919759396091912 ~2017
9880512745119761025490312 ~2017
9881711471919763422943912 ~2017
9881719411119763438822312 ~2017
Exponent Prime Factor Dig. Year
9882259229919764518459912 ~2017
9882277178319764554356712 ~2017
9882303145119764606290312 ~2017
9882346361919764692723912 ~2017
9882408043759294448262312 ~2018
9882846663759297079982312 ~2018
9883456684159300740104712 ~2018
9883654951759301929710312 ~2018
9884388605919768777211912 ~2017
9884604719919769209439912 ~2017
9885896705919771793411912 ~2017
9887588837919775177675912 ~2017
9888421171759330527030312 ~2018
9888630493119777260986312 ~2017
9891432355359348594131912 ~2018
9893160086319786320172712 ~2017
9893818391919787636783912 ~2017
9894064763919788129527912 ~2017
9894119294319788238588712 ~2017
9896328457119792656914312 ~2017
9896619287919793238575912 ~2017
9896990720319793981440712 ~2017
9897156302319794312604712 ~2017
9897632927919795265855912 ~2017
9897806453919795612907912 ~2017
Exponent Prime Factor Dig. Year
9898216133919796432267912 ~2017
9899127248319798254496712 ~2017
9899176183119798352366312 ~2017
9899268889119798537778312 ~2017
9899952743919799905487912 ~2017
9899987173119799974346312 ~2017
9900095564319800191128712 ~2017
9900799373919801598747912 ~2017
9900852583119801705166312 ~2017
9901834909119803669818312 ~2017
9901837633359411025799912 ~2018
9903149483919806298967912 ~2017
9903944654319807889308712 ~2017
9907472215119814944430312 ~2017
990845588175925...17256714 2024
9908610944319817221888712 ~2017
9909249085119818498170312 ~2017
9910256312319820512624712 ~2017
9910416986319820833972712 ~2017
9910843850319821687700712 ~2017
9911340419359468042515912 ~2018
9912187969119824375938312 ~2017
9912447512319824895024712 ~2017
9912768092319825536184712 ~2017
9913012889919826025779912 ~2017
Exponent Prime Factor Dig. Year
9913345163919826690327912 ~2017
9913602551919827205103912 ~2017
9914254537119828509074312 ~2017
9914730701919829461403912 ~2017
9914839775919829679551912 ~2017
9915944633919831889267912 ~2017
9916249883359497499299912 ~2018
991663019174997...16616914 2023
9917395391919834790783912 ~2017
9918558425919837116851912 ~2017
9919627963119839255926312 ~2017
9920142236319840284472712 ~2017
9920383436319840766872712 ~2017
9920618443119841236886312 ~2017
9921313945119842627890312 ~2017
9922873565919845747131912 ~2017
9923293405119846586810312 ~2017
9923740159119847480318312 ~2017
9924066688159544400128712 ~2018
9924215545119848431090312 ~2017
9924460895919848921791912 ~2017
9924918757119849837514312 ~2017
9924999002319849998004712 ~2017
9925935338319851870676712 ~2017
9925980263359555881579912 ~2018
Home
4.679.597 digits
e-mail
25-03-23