Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6193871819912387743639912 ~2015
6194185159112388370318312 ~2015
6194263028312388526056712 ~2015
6194857133912389714267912 ~2015
619508821211392...00800915 2025
6195243035912390486071912 ~2015
6195533467112391066934312 ~2015
6195764648312391529296712 ~2015
6195766535912391533071912 ~2015
6196104427337176626563912 ~2016
6196262999912392525999912 ~2015
6196437549737178625298312 ~2016
6196571375912393142751912 ~2015
6197274397112394548794312 ~2015
6197287481912394574963912 ~2015
6197409626949579277015312 ~2017
6197543185112395086370312 ~2015
6197673744137186042464712 ~2016
6198060307112396120614312 ~2015
6198076795112396153590312 ~2015
6198409835912396819671912 ~2015
6198799831112397599662312 ~2015
6198997063112397994126312 ~2015
6199178131737195068790312 ~2016
6200788457912401576915912 ~2015
Exponent Prime Factor Dig. Year
6200821633749606573069712 ~2017
6200863465112401726930312 ~2015
6201092155112402184310312 ~2015
6201173761112402347522312 ~2015
6201189301112402378602312 ~2015
6201201085962012010859112 ~2017
6201842423912403684847912 ~2015
6202387457912404774915912 ~2015
6202978496312405956992712 ~2015
6203329337912406658675912 ~2015
6203581465112407162930312 ~2015
6203832566312407665132712 ~2015
6203916797912407833595912 ~2015
6204671882312409343764712 ~2015
6204972917912409945835912 ~2015
6205043162312410086324712 ~2015
6205190612312410381224712 ~2015
6205494365337232966191912 ~2016
6205532569112411065138312 ~2015
6205637443112411274886312 ~2015
6205718513912411437027912 ~2015
6205870574312411741148712 ~2015
6206005538312412011076712 ~2015
6206122484312412244968712 ~2015
6206637320312413274640712 ~2015
Exponent Prime Factor Dig. Year
6206902505912413805011912 ~2015
6207603602312415207204712 ~2015
6208534130312417068260712 ~2015
6208582747737251496486312 ~2016
6208781951337252691707912 ~2016
6208932998312417865996712 ~2015
6209250739112418501478312 ~2015
6209976385112419952770312 ~2015
6210554432312421108864712 ~2015
6211143401912422286803912 ~2015
6211574519912423149039912 ~2015
6211683637112423367274312 ~2015
6212040059912424080119912 ~2015
6213288380312426576760712 ~2015
6213376457912426752915912 ~2015
6213568711337281412267912 ~2016
6213758822312427517644712 ~2015
6213938044749711504357712 ~2017
6214133117912428266235912 ~2015
6214300553912428601107912 ~2015
6214496921912428993843912 ~2015
6214816592312429633184712 ~2015
6215139205337290835231912 ~2016
6215758076312431516152712 ~2015
6215788123112431576246312 ~2015
Exponent Prime Factor Dig. Year
6217436833962174368339112 ~2017
6219729363737318376182312 ~2016
6220165586312440331172712 ~2015
6220531975112441063950312 ~2015
6220563602312441127204712 ~2015
6220631947962206319479112 ~2017
622110309413155...93275315 2024
6221143766312442287532712 ~2015
6221170937912442341875912 ~2015
6221405905112442811810312 ~2015
6221649155912443298311912 ~2015
6222259337912444518675912 ~2015
6222274244312444548488712 ~2015
6222672885737336037314312 ~2016
6222765511112445531022312 ~2015
6223041823112446083646312 ~2015
6223172964137339037784712 ~2016
6223324124312446648248712 ~2015
6223603541912447207083912 ~2015
6223825819112447651638312 ~2015
6224552965737347317794312 ~2016
6224656760949797254087312 ~2017
6224787553112449575106312 ~2015
6225076981112450153962312 ~2015
6225163321112450326642312 ~2015
Home
4.768.925 digits
e-mail
25-05-04