Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6249739357737498436146312 ~2016
6250241036312500482072712 ~2015
6250330987112500661974312 ~2015
6250406693912500813387912 ~2015
6250587175112501174350312 ~2015
6250756699112501513398312 ~2015
6250782322137504693932712 ~2016
6251322559112502645118312 ~2015
6251495947112502991894312 ~2015
6251548237112503096474312 ~2015
6251724382137510346292712 ~2016
6251927069912503854139912 ~2015
6252105235112504210470312 ~2015
6252205751912504411503912 ~2015
6253885673912507771347912 ~2015
6253949042312507898084712 ~2015
6254441926150035535408912 ~2017
6254544809912509089619912 ~2015
6254602406312509204812712 ~2015
6254827217912509654435912 ~2015
6255012483162550124831112 ~2017
6255191800362551918003112 ~2017
6255223794137531342764712 ~2016
6255472985912510945971912 ~2015
6255570166750044561333712 ~2017
Exponent Prime Factor Dig. Year
6255666902312511333804712 ~2015
6256049395112512098790312 ~2015
6256063840362560638403112 ~2017
6256283618312512567236712 ~2015
6256584584312513169168712 ~2015
6256612637912513225275912 ~2015
6256892999912513785999912 ~2015
6257447345337544684071912 ~2017
6257507851337545047107912 ~2017
6257666423912515332847912 ~2015
6257916869912515833739912 ~2015
6258411254312516822508712 ~2015
6258926689737553560138312 ~2017
6259039946312518079892712 ~2015
6259329242312518658484712 ~2015
625956590234719...90334314 2024
6259632289112519264578312 ~2015
6259713638312519427276712 ~2015
6259855315112519710630312 ~2015
6260315957912520631915912 ~2015
6260412971912520825943912 ~2015
6261019538312522039076712 ~2015
6261355682312522711364712 ~2015
6261411727112522823454312 ~2015
6261494203112522988406312 ~2015
Exponent Prime Factor Dig. Year
6261719879912523439759912 ~2015
6261794981912523589963912 ~2015
6262011452312524022904712 ~2015
6262122341912524244683912 ~2015
6262332302312524664604712 ~2015
6262424444312524848888712 ~2015
6262468597112524937194312 ~2015
6262479979112524959958312 ~2015
6262510333737575062002312 ~2017
6262784986150102279888912 ~2017
6262840644137577043864712 ~2017
6263178692312526357384712 ~2015
6263280607737579683646312 ~2017
6263626343912527252687912 ~2015
6263724986950109799895312 ~2017
6263848003112527696006312 ~2015
6264337183112528674366312 ~2015
6265253501912530507003912 ~2015
6265519995162655199951112 ~2017
6265545655337593273931912 ~2017
6265728655112531457310312 ~2015
6265730035112531460070312 ~2015
6266441912312532883824712 ~2015
6266847793337601086759912 ~2017
6267190415912534380831912 ~2015
Exponent Prime Factor Dig. Year
626727142311163...61273715 2023
6267317652137603905912712 ~2017
6267336307337604017843912 ~2017
6267447014312534894028712 ~2015
6267962413112535924826312 ~2015
6268027160312536054320712 ~2015
6268250009912536500019912 ~2015
6268522909112537045818312 ~2015
626872005612745...84571914 2023
6269321327912538642655912 ~2015
6269438324312538876648712 ~2015
6269815724312539631448712 ~2015
6270607178312541214356712 ~2015
6271562986150172503888912 ~2017
6272098651112544197302312 ~2015
6272102425150176819400912 ~2017
6272406825737634440954312 ~2017
6272925911912545851823912 ~2015
6273167740150185341920912 ~2017
6273204964362732049643112 ~2017
6273238826312546477652712 ~2015
6273242060312546484120712 ~2015
6273402960137640417760712 ~2017
6273516187750188129501712 ~2017
6273631207112547262414312 ~2015
Home
4.768.925 digits
e-mail
25-05-04