Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1811437451362287490310 ~2003
1811508599362301719910 ~2003
1811599379362319875910 ~2003
1811714351362342870310 ~2003
1811765603362353120710 ~2003
1811791571362358314310 ~2003
1811822471362364494310 ~2003
1811827943362365588710 ~2003
1811966339362393267910 ~2003
18120201431812020143111 ~2005
1812040859362408171910 ~2003
18120969739785323654311 ~2007
1812232211362446442310 ~2003
18122333691449786695311 ~2005
18122568471449805477711 ~2005
18122605198698850491311 ~2007
1812280583362456116710 ~2003
18123560712899769713711 ~2006
18123637311449890984911 ~2005
18123724333987219352711 ~2006
1812377579362475515910 ~2003
18123966012899834561711 ~2006
1812418799362483759910 ~2003
1812510803362502160710 ~2003
1812727811362545562310 ~2003
Exponent Prime Factor Digits Year
18127462511812746251111 ~2005
1812794339362558867910 ~2003
1812811163362562232710 ~2003
18128718771450297501711 ~2005
1812941243362588248710 ~2003
18130226113263440699911 ~2006
18131850911813185091111 ~2005
1813209971362641994310 ~2003
1813375463362675092710 ~2003
18133946571088036794311 ~2004
1813473611362694722310 ~2003
18135682011450854560911 ~2005
1813577123362715424710 ~2003
1813597631362719526310 ~2003
1813600643362720128710 ~2003
1813606391362721278310 ~2003
1813657691362731538310 ~2003
1813717151362743430310 ~2003
18137455371088247322311 ~2004
1813860599362772119910 ~2003
18139072671451125813711 ~2005
1813909931362781986310 ~2003
18139496174353479080911 ~2006
1814031143362806228710 ~2003
1814056883362811376710 ~2003
Exponent Prime Factor Digits Year
1814061839362812367910 ~2003
18140695611088441736711 ~2004
1814127611362825522310 ~2003
18141555371088493322311 ~2004
18141616371451329309711 ~2005
1814209751362841950310 ~2003
1814281739362856347910 ~2003
18144168894354600533711 ~2006
1814430743362886148710 ~2003
18145095731088705743911 ~2004
18145211232903233796911 ~2006
1814545079362909015910 ~2003
1814549651362909930310 ~2003
1814568851362913770310 ~2003
1814607143362921428710 ~2003
1814689379362937875910 ~2003
1814696483362939296710 ~2003
1814742971362948594310 ~2003
18149545011088972700711 ~2004
1814958851362991770310 ~2003
1815062891363012578310 ~2003
1815121559363024311910 ~2003
18151400293993308063911 ~2006
18151632371089097942311 ~2004
1815212219363042443910 ~2003
Exponent Prime Factor Digits Year
18152239871815223987111 ~2005
18152624593267472426311 ~2006
18153548411089212904711 ~2004
1815432959363086591910 ~2003
1815473039363094607910 ~2003
1815609623363121924710 ~2003
1815618719363123743910 ~2003
1815632999363126599910 ~2003
1815683651363136730310 ~2003
1815847751363169550310 ~2003
1815852119363170423910 ~2003
1816010951363202190310 ~2003
1816037711363207542310 ~2003
18160522331089631339911 ~2004
1816082483363216496710 ~2003
1816099751363219950310 ~2003
1816100519363220103910 ~2003
1816108379363221675910 ~2003
1816161383363232276710 ~2003
1816176179363235235910 ~2003
18161962273269153208711 ~2006
1816326119363265223910 ~2003
1816482263363296452710 ~2003
18164844975449453491111 ~2006
18165673094359761541711 ~2006
Home
4.768.925 digits
e-mail
25-05-04