Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1280489471256097894310 ~2002
12806108391024488671311 ~2004
1280611919256122383910 ~2002
12806757233073621735311 ~2005
1280694071256138814310 ~2002
1280772659256154531910 ~2002
1280835299256167059910 ~2002
1280838683256167736710 ~2002
1280862983256172596710 ~2002
1280874599256174919910 ~2002
12808754111280875411111 ~2004
1280930219256186043910 ~2002
1280947163256189432710 ~2002
1280955359256191071910 ~2002
1280962031256192406310 ~2002
1281047759256209551910 ~2002
12810533511024842680911 ~2004
1281165419256233083910 ~2002
1281236279256247255910 ~2002
1281258383256251676710 ~2002
12812642513331287052711 ~2005
12812690512306284291911 ~2004
1281283043256256608710 ~2002
12813043011025043440911 ~2004
1281380459256276091910 ~2002
Exponent Prime Factor Digits Year
12814504914100641571311 ~2005
1281479411256295882310 ~2002
1281482063256296412710 ~2002
1281483323256296664710 ~2002
1281529211256305842310 ~2002
1281573599256314719910 ~2002
1281651323256330264710 ~2002
1281680353769008211910 ~2003
12816810835383060548711 ~2005
1281690131256338026310 ~2002
1281700391256340078310 ~2002
1281755821769053492710 ~2003
1281762203256352440710 ~2002
128183734111023801132712 ~2006
12818529375127411748111 ~2005
1281897013769138207910 ~2003
1281898619256379723910 ~2002
1281905123256381024710 ~2002
12819145491794680368711 ~2004
1281915359256383071910 ~2002
1281921131256384226310 ~2002
1281938351256387670310 ~2002
12819412491025552999311 ~2004
1282010881769206528710 ~2003
1282036559256407311910 ~2002
Exponent Prime Factor Digits Year
1282046723256409344710 ~2002
1282074539256414907910 ~2002
12821746796154438459311 ~2006
1282208183256441636710 ~2002
1282209503256441900710 ~2002
1282296419256459283910 ~2002
1282318571256463714310 ~2002
1282334843256466968710 ~2002
1282351571256470314310 ~2002
1282353599256470719910 ~2002
12823710291025896823311 ~2004
1282404659256480931910 ~2002
1282447613769468567910 ~2003
1282458431256491686310 ~2002
1282460303256492060710 ~2002
1282522019256504403910 ~2002
1282536239256507247910 ~2002
1282590443256518088710 ~2002
1282606181769563708710 ~2003
1282682651256536530310 ~2002
1282726283256545256710 ~2002
12827425011026194000911 ~2004
1282758611256551722310 ~2002
1282759451256551890310 ~2002
1282772321769663392710 ~2003
Exponent Prime Factor Digits Year
1282831703256566340710 ~2002
1282856999256571399910 ~2002
1282872119256574423910 ~2002
1282885573769731343910 ~2003
1282900511256580102310 ~2002
1282929611256585922310 ~2002
1282973953769784371910 ~2003
1282974851256594970310 ~2002
1283091913769855147910 ~2003
1283192753769915651910 ~2003
12831934515132773804111 ~2005
1283222903256644580710 ~2002
1283301191256660238310 ~2002
1283322959256664591910 ~2002
1283348051256669610310 ~2002
1283398043256679608710 ~2002
12834507711026760616911 ~2004
1283551019256710203910 ~2002
12835848591026867887311 ~2004
1283589491256717898310 ~2002
12835997293850799187111 ~2005
1283617091256723418310 ~2002
1283667323256733464710 ~2002
1283687759256737551910 ~2002
1283700563256740112710 ~2002
Home
4.888.230 digits
e-mail
25-06-29