Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18165909011089954540711 ~2004
1816614479363322895910 ~2003
18166528132543313938311 ~2005
1816736123363347224710 ~2003
1816785059363357011910 ~2003
18168136191453450895311 ~2005
18169784211090187052711 ~2004
1817015891363403178310 ~2003
1817029163363405832710 ~2003
18170580771090234846311 ~2004
1817073971363414794310 ~2003
18171188713270813967911 ~2006
1817158643363431728710 ~2003
1817161403363432280710 ~2003
1817194559363438911910 ~2003
18172144331090328659911 ~2004
1817268899363453779910 ~2003
18172725292544181540711 ~2005
1817288591363457718310 ~2003
1817339351363467870310 ~2003
1817348579363469715910 ~2003
1817405699363481139910 ~2003
1817417603363483520710 ~2003
18175942391817594239111 ~2005
1817676491363535298310 ~2003
Exponent Prime Factor Digits Year
18177365231817736523111 ~2005
18178047715816975267311 ~2006
18178872374362929368911 ~2006
1817932139363586427910 ~2003
18179656911454372552911 ~2005
18179894171090793650311 ~2004
1818002339363600467910 ~2003
18180215215817668867311 ~2006
1818067403363613480710 ~2003
18180855171454468413711 ~2005
1818101891363620378310 ~2003
1818102983363620596710 ~2003
1818104819363620963910 ~2003
1818158063363631612710 ~2003
18181650731090899043911 ~2004
181817504934908960940912 ~2008
181833270710546329700712 ~2007
1818450503363690100710 ~2003
1818499379363699875910 ~2003
18186200871454896069711 ~2005
18186544931091192695911 ~2004
18186642971091198578311 ~2004
1818668231363733646310 ~2003
18187158611091229516711 ~2004
1818832679363766535910 ~2003
Exponent Prime Factor Digits Year
18188615895456584767111 ~2006
18189789011091387340711 ~2004
18190334832910453572911 ~2006
18190639911455251192911 ~2005
1819173299363834659910 ~2003
1819173311363834662310 ~2003
18192059811091523588711 ~2004
1819216583363843316710 ~2003
1819346219363869243910 ~2003
18194146011091648760711 ~2004
18194195931091651755911 ~2004
18194754771455580381711 ~2005
18194801274730648330311 ~2006
1819495319363899063910 ~2003
1819506119363901223910 ~2003
18195689211455655136911 ~2005
1819579211363915842310 ~2003
18195814031819581403111 ~2005
18196632771091797966311 ~2004
1819748951363949790310 ~2003
18198762731091925763911 ~2004
18198898731091933923911 ~2004
18198919011455913520911 ~2005
1819914263363982852710 ~2003
1819923719363984743910 ~2003
Exponent Prime Factor Digits Year
18199607391455968591311 ~2005
1819998023363999604710 ~2003
1820024711364004942310 ~2003
1820082359364016471910 ~2003
18201231532548172414311 ~2005
18201940934004427004711 ~2006
1820194223364038844710 ~2003
1820195603364039120710 ~2003
1820276519364055303910 ~2003
1820319551364063910310 ~2003
18203443131092206587911 ~2004
1820361551364072310310 ~2003
1820464199364092839910 ~2003
18206946131092416767911 ~2004
1820776883364155376710 ~2003
1820789843364157968710 ~2003
18208639511820863951111 ~2005
1820867183364173436710 ~2003
1820950559364190111910 ~2003
18209688171092581290311 ~2004
1821015263364203052710 ~2003
18210724271821072427111 ~2005
1821089183364217836710 ~2003
1821148403364229680710 ~2003
1821149399364229879910 ~2003
Home
4.768.925 digits
e-mail
25-05-04