Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1062314843212462968710 ~2002
1062366491212473298310 ~2002
1062370871212474174310 ~2002
1062379151212475830310 ~2002
1062384299212476859910 ~2002
1062393077849914461710 ~2003
1062455843212491168710 ~2002
1062480599212496119910 ~2002
10624829894249931956111 ~2005
1062549899212509979910 ~2002
1062558383212511676710 ~2002
10626352572550324616911 ~2004
1062636563212527312710 ~2002
1062638183212527636710 ~2002
1062659861637595916710 ~2003
1062666131212533226310 ~2002
1062678803212535760710 ~2002
10627012031700321924911 ~2004
1062720839212544167910 ~2002
1062735623212547124710 ~2002
10627373831062737383111 ~2003
1062744317850195453710 ~2003
1062765971212553194310 ~2002
1062780863212556172710 ~2002
1062785819212557163910 ~2002
Exponent Prime Factor Digits Year
1062839891212567978310 ~2002
10628523171487993243911 ~2004
1062865439212573087910 ~2002
1062884783212576956710 ~2002
1062902723212580544710 ~2002
1062949031212589806310 ~2002
1063005899212601179910 ~2002
1063019939212603987910 ~2002
1063026011212605202310 ~2002
1063036619212607323910 ~2002
1063073281637843968710 ~2003
10630756391063075639111 ~2003
1063154879850523903310 ~2003
1063183237637909942310 ~2003
1063190699850552559310 ~2003
1063255211212651042310 ~2002
1063292903212658580710 ~2002
1063293971212658794310 ~2002
1063372733638023639910 ~2003
1063469531212693906310 ~2002
1063493831212698766310 ~2002
1063498883212699776710 ~2002
10635289437019291023911 ~2005
10635412432765207231911 ~2004
1063602863212720572710 ~2002
Exponent Prime Factor Digits Year
1063603301850882640910 ~2003
1063624871212724974310 ~2002
1063637639212727527910 ~2002
1063658699212731739910 ~2002
1063675681638205408710 ~2003
1063706531212741306310 ~2002
10637705771702032923311 ~2004
1063801331212760266310 ~2002
1063804583212760916710 ~2002
1063821313638292787910 ~2003
1063826903212765380710 ~2002
1063844053638306431910 ~2003
1063883591212776718310 ~2002
1063895639212779127910 ~2002
10639590671063959067111 ~2003
1063959503212791900710 ~2002
1064008391212801678310 ~2002
1064032799851226239310 ~2003
1064071583212814316710 ~2002
1064088611212817722310 ~2002
1064091263212818252710 ~2002
1064127641851302112910 ~2003
1064134139212826827910 ~2002
1064179943212835988710 ~2002
1064206259212841251910 ~2002
Exponent Prime Factor Digits Year
1064229157638537494310 ~2003
1064233151212846630310 ~2002
1064269859212853971910 ~2002
1064278703212855740710 ~2002
1064290739212858147910 ~2002
10642927871064292787111 ~2003
1064306057851444845710 ~2003
10644076493406104476911 ~2004
1064434643212886928710 ~2002
1064442191212888438310 ~2002
1064458511212891702310 ~2002
1064470703212894140710 ~2002
1064485283212897056710 ~2002
1064486831212897366310 ~2002
1064486921851589536910 ~2003
1064498663212899732710 ~2002
1064500379212900075910 ~2002
1064533763212906752710 ~2002
1064537261638722356710 ~2003
1064539921638723952710 ~2003
10645758791064575879111 ~2003
10646693176813883628911 ~2005
1064732351212946470310 ~2002
1064742551212948510310 ~2002
10647516293407205212911 ~2004
Home
5.187.277 digits
e-mail
25-11-17