Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1805516183361103236710 ~2003
1805541863361108372710 ~2003
18057062473250271244711 ~2006
1805729531361145906310 ~2003
1805741219361148243910 ~2003
18059250011083555000711 ~2004
18059363811444749104911 ~2005
1805963051361192610310 ~2003
1805970779361194155910 ~2003
18061407591444912607311 ~2005
1806165191361233038310 ~2003
1806214379361242875910 ~2003
18062513531083750811911 ~2004
1806271283361254256710 ~2003
1806314903361262980710 ~2003
1806547751361309550310 ~2003
1806616043361323208710 ~2003
1806741983361348396710 ~2003
1806770891361354178310 ~2003
1806971651361394330310 ~2003
1807091399361418279910 ~2003
18071410331084284619911 ~2004
1807164839361432967910 ~2003
1807267139361453427910 ~2003
1807279499361455899910 ~2003
Exponent Prime Factor Digits Year
1807350179361470035910 ~2003
18074551372530437191911 ~2005
18075317934338076303311 ~2006
1807718651361543730310 ~2003
18077591811446207344911 ~2005
1807777259361555451910 ~2003
1807881143361576228710 ~2003
18081066172531349263911 ~2005
1808115839361623167910 ~2003
1808164199361632839910 ~2003
18081707897232683156111 ~2006
18081942172531471903911 ~2005
1808226659361645331910 ~2003
1808229443361645888710 ~2003
18084046211085042772711 ~2004
18086014971085160898311 ~2004
1808605523361721104710 ~2003
18087116771085227006311 ~2004
18087498371085249902311 ~2004
18087605171085256310311 ~2004
18087932991447034639311 ~2005
18088100271447048021711 ~2005
1808885219361777043910 ~2003
18088992771447119421711 ~2005
1808918183361783636710 ~2003
Exponent Prime Factor Digits Year
18089458135788626601711 ~2006
1809054083361810816710 ~2003
18090549531085432971911 ~2004
1809071399361814279910 ~2003
1809220103361844020710 ~2003
180945245918818305573712 ~2008
18095444331085726659911 ~2004
1809647699361929539910 ~2003
18096512531085790751911 ~2004
18096676211085800572711 ~2004
1809698483361939696710 ~2003
1809855863361971172710 ~2003
1809987743361997548710 ~2003
1810089419362017883910 ~2003
18100950411086057024711 ~2004
18101495331086089719911 ~2004
1810166951362033390310 ~2003
18102297771086137866311 ~2004
18102321471448185717711 ~2005
18102332415430699723111 ~2006
1810270751362054150310 ~2003
1810289759362057951910 ~2003
1810321451362064290310 ~2003
18104004611086240276711 ~2004
1810428023362085604710 ~2003
Exponent Prime Factor Digits Year
1810437659362087531910 ~2003
18104899791448391983311 ~2005
1810577711362115542310 ~2003
1810641179362128235910 ~2003
1810662083362132416710 ~2003
1810807403362161480710 ~2003
1810813859362162771910 ~2003
1810817303362163460710 ~2003
1810832099362166419910 ~2003
1810838951362167790310 ~2003
1810854803362170960710 ~2003
1810894223362178844710 ~2003
1810921919362184383910 ~2003
1810953503362190700710 ~2003
1810980491362196098310 ~2003
1811207291362241458310 ~2003
1811278823362255764710 ~2003
1811288471362257694310 ~2003
1811313071362262614310 ~2003
18113448891449075911311 ~2005
18113473397607658823911 ~2007
1811352743362270548710 ~2003
1811361179362272235910 ~2003
1811375123362275024710 ~2003
18113944011449115520911 ~2005
Home
4.768.925 digits
e-mail
25-05-04