Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1018745159203749031910 ~2001
1018812073611287243910 ~2003
1018839683203767936710 ~2001
1018849757815079805710 ~2003
10188609771426405367911 ~2003
1018906297611343778310 ~2003
1018909343203781868710 ~2001
1018920671203784134310 ~2001
10189291391018929139111 ~2003
1018957463203791492710 ~2001
10189662613056898783111 ~2004
1019023283203804656710 ~2001
1019074883203814976710 ~2001
1019079599203815919910 ~2001
1019083979203816795910 ~2001
1019090459815272367310 ~2003
1019094337611456602310 ~2003
1019218199203843639910 ~2001
1019225699203845139910 ~2001
1019232251203846450310 ~2001
1019319599203863919910 ~2001
1019327741611596644710 ~2003
1019338319203867663910 ~2001
1019347211203869442310 ~2001
1019371163203874232710 ~2001
Exponent Prime Factor Digits Year
1019383751203876750310 ~2001
1019398631203879726310 ~2001
1019423459203884691910 ~2001
1019427803203885560710 ~2001
1019462903203892580710 ~2001
1019480603203896120710 ~2001
1019508923203901784710 ~2001
1019509691203901938310 ~2001
1019559059203911811910 ~2001
1019584199203916839910 ~2001
1019585471203917094310 ~2001
1019610191203922038310 ~2001
1019611751203922350310 ~2001
1019650343203930068710 ~2001
1019732933611839759910 ~2003
10197400493263168156911 ~2004
1019860781611916468710 ~2003
1019905511203981102310 ~2001
1019956571203991314310 ~2001
1019957273611974363910 ~2003
1020007031204001406310 ~2001
1020012493612007495910 ~2003
1020024359204004871910 ~2001
1020029771816023816910 ~2003
1020064169816051335310 ~2003
Exponent Prime Factor Digits Year
1020083843204016768710 ~2001
1020083891204016778310 ~2001
1020095099204019019910 ~2001
1020119279204023855910 ~2001
10201246437344897429711 ~2005
1020157031204031406310 ~2001
1020238883204047776710 ~2001
1020252251204050450310 ~2001
1020286031204057206310 ~2001
10203025871020302587111 ~2003
1020316343204063268710 ~2001
1020323879204064775910 ~2001
1020380423204076084710 ~2001
1020381179204076235910 ~2001
1020383471204076694310 ~2001
1020405341612243204710 ~2003
1020431441816345152910 ~2003
1020456097612273658310 ~2003
1020458531204091706310 ~2001
1020475451204095090310 ~2001
1020500617612300370310 ~2003
1020525413612315247910 ~2003
1020568091204113618310 ~2001
1020617183204123436710 ~2001
102064020736130663327912 ~2007
Exponent Prime Factor Digits Year
1020640403204128080710 ~2001
1020658643204131728710 ~2001
1020671819204134363910 ~2001
1020704579204140915910 ~2001
1020717197612430318310 ~2003
1020722471204144494310 ~2001
1020860051204172010310 ~2001
1020881651204176330310 ~2001
1020895259204179051910 ~2001
1020898553612539131910 ~2003
10209085013062725503111 ~2004
1020983273612589963910 ~2003
1021017083204203416710 ~2001
1021028471204205694310 ~2001
1021044257612626554310 ~2003
1021044263204208852710 ~2001
10210707071837927272711 ~2004
10211099831021109983111 ~2003
1021110421612666252710 ~2003
1021110971204222194310 ~2001
1021113239204222647910 ~2001
1021143037612685822310 ~2003
1021159091204231818310 ~2001
10211769671021176967111 ~2003
1021219931204243986310 ~2001
Home
4.768.925 digits
e-mail
25-05-04