Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1088449451217689890310 ~2002
1088455871217691174310 ~2002
1088468351217693670310 ~2002
1088474171217694834310 ~2002
1088477969870782375310 ~2003
1088482379217696475910 ~2002
1088495279217699055910 ~2002
1088542837653125702310 ~2003
1088553023217710604710 ~2002
1088560079217712015910 ~2002
1088583791217716758310 ~2002
1088646641870917312910 ~2003
1088667803217733560710 ~2002
1088721311217744262310 ~2002
1088734331217746866310 ~2002
1088744159217748831910 ~2002
1088774051217754810310 ~2002
1088786591217757318310 ~2002
1088798339217759667910 ~2002
1088836271217767254310 ~2002
1088893319871114655310 ~2003
10889157132613397711311 ~2004
1088968043217793608710 ~2002
1089014183217802836710 ~2002
1089022163217804432710 ~2002
Exponent Prime Factor Digits Year
1089027371217805474310 ~2002
1089095291217819058310 ~2002
1089109979217821995910 ~2002
1089115679217823135910 ~2002
1089143339217828667910 ~2002
1089144659217828931910 ~2002
1089182903217836580710 ~2002
1089208271217841654310 ~2002
1089208559217841711910 ~2002
1089240479217848095910 ~2002
1089253043217850608710 ~2002
10892929992614303197711 ~2004
10895076919587667680911 ~2006
1089605417653763250310 ~2003
1089617891217923578310 ~2002
10896193974140553708711 ~2005
1089634037871707229710 ~2003
1089644581653786748710 ~2003
1089707891217941578310 ~2002
1089711071217942214310 ~2002
10897176613269152983111 ~2004
1089719801653831880710 ~2003
1089820643217964128710 ~2002
1089847859217969571910 ~2002
1089851183217970236710 ~2002
Exponent Prime Factor Digits Year
1089865943217973188710 ~2002
1089901451217980290310 ~2002
1089956639217991327910 ~2002
10899757438719805944111 ~2006
1090026011218005202310 ~2002
1090034831218006966310 ~2002
10900610813270183243111 ~2004
109009561912209070932912 ~2006
1090118831218023766310 ~2002
10901709431090170943111 ~2003
1090175903218035180710 ~2002
1090199801872159840910 ~2003
1090224743218044948710 ~2002
1090299251218059850310 ~2002
1090333697654200218310 ~2003
1090339031218067806310 ~2002
1090345043218069008710 ~2002
1090387097872309677710 ~2003
1090417463218083492710 ~2002
1090444079218088815910 ~2002
1090447271218089454310 ~2002
1090528319218105663910 ~2002
1090552019218110403910 ~2002
1090564031218112806310 ~2002
10905891914362356764111 ~2005
Exponent Prime Factor Digits Year
1090597439218119487910 ~2002
1090602179218120435910 ~2002
10906162973271848891111 ~2004
1090637489872509991310 ~2003
1090654141654392484710 ~2003
1090702451218140490310 ~2002
1090769437654461662310 ~2003
1090875503218175100710 ~2002
1090985213654591127910 ~2003
1090987211218197442310 ~2002
1090997279218199455910 ~2002
10910228511963841131911 ~2004
1091028803218205760710 ~2002
1091034443218206888710 ~2002
1091046263218209252710 ~2002
1091084363218216872710 ~2002
1091134991872907992910 ~2003
1091144843218228968710 ~2002
1091175221654705132710 ~2003
1091217839218243567910 ~2002
1091238779218247755910 ~2002
1091281393654768835910 ~2003
1091283239218256647910 ~2002
1091311619218262323910 ~2002
1091313037654787822310 ~2003
Home
4.724.182 digits
e-mail
25-04-13