Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1122443891224488778310 ~2002
11224702491571458348711 ~2004
1122484697673490818310 ~2003
1122528371224505674310 ~2002
1122548831224509766310 ~2002
1122561431224512286310 ~2002
1122569879224513975910 ~2002
1122580859224516171910 ~2002
1122610397673566238310 ~2003
1122640979224528195910 ~2002
1122641363224528272710 ~2002
1122693899224538779910 ~2002
11227304171796368667311 ~2004
1122731471224546294310 ~2002
1122739463224547892710 ~2002
1122773761673664256710 ~2003
1122774251898219400910 ~2003
11227782492470112147911 ~2004
1122788879224557775910 ~2002
1122823109898258487310 ~2003
1122824303224564860710 ~2002
1122833843224566768710 ~2002
1122872843224574568710 ~2002
1122924371224584874310 ~2002
1122931451224586290310 ~2002
Exponent Prime Factor Digits Year
1122937861673762716710 ~2003
1122949211224589842310 ~2002
1122972743224594548710 ~2002
112303576111454964762312 ~2006
1123070513673842307910 ~2003
1123116983224623396710 ~2002
1123161191224632238310 ~2002
1123176419224635283910 ~2002
1123185683224637136710 ~2002
11232324894268283458311 ~2005
1123236377673941826310 ~2003
1123281143224656228710 ~2002
1123295861673977516710 ~2003
1123296059898636847310 ~2003
1123332599224666519910 ~2002
1123335263224667052710 ~2002
1123352221674011332710 ~2003
1123374313674024587910 ~2003
1123409411224681882310 ~2002
1123554203224710840710 ~2002
1123580063224716012710 ~2002
1123593059224718611910 ~2002
1123731443224746288710 ~2002
1123819379224763875910 ~2002
1123831619224766323910 ~2002
Exponent Prime Factor Digits Year
1123844353674306611910 ~2003
1123895477899116381710 ~2003
1123993439224798687910 ~2002
1124073803224814760710 ~2002
1124073851224814770310 ~2002
1124076923224815384710 ~2002
1124105261674463156710 ~2003
1124115263224823052710 ~2002
11241505131573810718311 ~2004
1124159483224831896710 ~2002
1124163011224832602310 ~2002
11241839532473204696711 ~2004
1124185943224837188710 ~2002
11241869831124186983111 ~2003
11241889872698053568911 ~2004
1124191319224838263910 ~2002
11242190518094377167311 ~2005
1124229913674537947910 ~2003
1124240441899392352910 ~2003
1124271539224854307910 ~2002
1124329919224865983910 ~2002
1124349851224869970310 ~2002
1124355923224871184710 ~2002
1124358491224871698310 ~2002
1124383223224876644710 ~2002
Exponent Prime Factor Digits Year
1124392169899513735310 ~2003
11244656514722755734311 ~2005
1124485031224897006310 ~2002
1124532611224906522310 ~2002
1124549483224909896710 ~2002
1124557103224911420710 ~2002
1124617097674770258310 ~2003
1124629871899703896910 ~2003
1124632763224926552710 ~2002
1124633063224926612710 ~2002
1124692259224938451910 ~2002
1124724179899779343310 ~2003
1124741903224948380710 ~2002
11248033332474567332711 ~2004
1124836837674902102310 ~2003
1124839823224967964710 ~2002
1124865359224973071910 ~2002
1124914151224982830310 ~2002
1124955983224991196710 ~2002
1124976371224995274310 ~2002
1124978339224995667910 ~2002
1124981219899984975310 ~2003
1125015071225003014310 ~2002
1125041999225008399910 ~2002
1125042203225008440710 ~2002
Home
4.768.925 digits
e-mail
25-05-04