Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
10212961812246851598311 ~2004
1021307363204261472710 ~2001
1021326203204265240710 ~2001
1021379519204275903910 ~2001
1021402691204280538310 ~2001
1021451603204290320710 ~2001
1021465223204293044710 ~2001
1021488491204297698310 ~2001
1021502737612901642310 ~2003
10215124871838722476711 ~2004
1021554419204310883910 ~2001
1021558523204311704710 ~2001
1021570871204314174310 ~2001
10215977838377101820711 ~2005
10216130931430258330311 ~2003
1021618597612971158310 ~2003
1021638983204327796710 ~2001
1021712171204342434310 ~2001
1021869899204373979910 ~2001
102189552714102158272712 ~2006
1021914983204382996710 ~2001
1021976723204395344710 ~2001
1021984417613190650310 ~2003
1021991783204398356710 ~2001
1021999621613199772710 ~2003
Exponent Prime Factor Digits Year
1022004299204400859910 ~2001
10220487191022048719111 ~2003
1022080427817664341710 ~2003
1022092301613255380710 ~2003
1022096521613257912710 ~2003
1022147051204429410310 ~2001
1022154719204430943910 ~2001
1022170463204434092710 ~2001
10221995711022199571111 ~2003
1022233907817787125710 ~2003
1022238251204447650310 ~2001
1022246441613347864710 ~2003
1022276771204455354310 ~2001
1022311403204462280710 ~2001
1022311943204462388710 ~2001
1022345459204469091910 ~2001
10223977375725427327311 ~2005
1022411723204482344710 ~2001
1022416379204483275910 ~2001
1022423543204484708710 ~2001
1022428717613457230310 ~2003
1022475791204495158310 ~2001
1022511131204502226310 ~2001
1022512763204502552710 ~2001
1022556191204511238310 ~2001
Exponent Prime Factor Digits Year
10225878611636140577711 ~2004
1022598851204519770310 ~2001
1022666633613599979910 ~2003
1022671889818137511310 ~2003
1022694203204538840710 ~2001
1022729303204545860710 ~2001
1022775863204555172710 ~2001
1022781299204556259910 ~2001
1022789459204557891910 ~2001
1022793203204558640710 ~2001
1022857091204571418310 ~2001
1022888411204577682310 ~2001
1022904359204580871910 ~2001
1022953271204590654310 ~2001
1022958011204591602310 ~2001
1022982263204596452710 ~2001
1023017591204603518310 ~2001
10230773831023077383111 ~2003
1023078839204615767910 ~2001
1023093083204618616710 ~2001
10230987011636957921711 ~2004
1023136571204627314310 ~2001
1023210983204642196710 ~2001
1023237311204647462310 ~2001
1023243839204648767910 ~2001
Exponent Prime Factor Digits Year
1023270869818616695310 ~2003
1023294683204658936710 ~2001
1023300563204660112710 ~2001
1023304571204660914310 ~2001
1023317651204663530310 ~2001
10233508931637361428911 ~2004
1023417779204683555910 ~2001
1023428753614057251910 ~2003
10234332071023433207111 ~2003
1023444371204688874310 ~2001
1023457871204691574310 ~2001
1023463829818771063310 ~2003
1023465659204693131910 ~2001
1023496283204699256710 ~2001
1023503171204700634310 ~2001
1023522023204704404710 ~2001
1023534923204706984710 ~2001
1023605123204721024710 ~2001
1023618551204723710310 ~2001
1023654119204730823910 ~2001
1023691079204738215910 ~2001
1023699023204739804710 ~2001
1023721379204744275910 ~2001
1023724763204744952710 ~2001
10237404232456977015311 ~2004
Home
4.768.925 digits
e-mail
25-05-04