Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
939701963187940392710 ~2001
939738323187947664710 ~2001
939783961563870376710 ~2002
939791291187958258310 ~2001
939806099187961219910 ~2001
939822901563893740710 ~2002
939827159187965431910 ~2001
9398464876202986814311 ~2005
939919691187983938310 ~2001
939940019187988003910 ~2001
939945719187989143910 ~2001
9399572692819871807111 ~2004
939977771187995554310 ~2001
9400215492820064647111 ~2004
940049171188009834310 ~2001
940093991188018798310 ~2001
940111379188022275910 ~2001
940169123188033824710 ~2001
940182179188036435910 ~2001
940202831188040566310 ~2001
940231763188046352710 ~2001
940243321564145992710 ~2002
940249619188049923910 ~2001
940269443188053888710 ~2001
940323563188064712710 ~2001
Exponent Prime Factor Digits Year
940335937564201562310 ~2002
9403443111692619759911 ~2003
940353991940353991110 ~2003
940354621564212772710 ~2002
940375811188075162310 ~2001
940402163188080432710 ~2001
940413967940413967110 ~2003
9404154711692747847911 ~2003
9404378875266452167311 ~2005
940442039188088407910 ~2001
940444283188088856710 ~2001
940472723188094544710 ~2001
940521839188104367910 ~2001
940533323188106664710 ~2001
940542899188108579910 ~2001
940561679188112335910 ~2001
940588919188117783910 ~2001
9406289932257509583311 ~2004
940645907752516725710 ~2003
940649243188129848710 ~2001
9407049972257691992911 ~2004
940728011188145602310 ~2001
940740239188148047910 ~2001
940743491188148698310 ~2001
940761301564456780710 ~2002
Exponent Prime Factor Digits Year
9407673292257841589711 ~2004
940774319188154863910 ~2001
940781483188156296710 ~2001
9408221111505315377711 ~2003
940825439188165087910 ~2001
9408551635268788912911 ~2005
940891079188178215910 ~2001
940895099188179019910 ~2001
940916363188183272710 ~2001
940926611188185322310 ~2001
940932539188186507910 ~2001
940934497564560698310 ~2002
940944479188188895910 ~2001
9409631872446504286311 ~2004
941037683188207536710 ~2001
941041499188208299910 ~2001
941057531188211506310 ~2001
941076971188215394310 ~2001
941092991188218598310 ~2001
941101319188220263910 ~2001
941168831188233766310 ~2001
941180531752944424910 ~2003
9412937515271245005711 ~2005
941349371188269874310 ~2001
941418683188283736710 ~2001
Exponent Prime Factor Digits Year
941441771188288354310 ~2001
941453003188290600710 ~2001
941495123188299024710 ~2001
941507471188301494310 ~2001
941508443188301688710 ~2001
941568059188313611910 ~2001
941598719188319743910 ~2001
941636879188327375910 ~2001
941658863188331772710 ~2001
941674091188334818310 ~2001
9416782613013370435311 ~2004
9417023292260085589711 ~2004
941741939188348387910 ~2001
941802143188360428710 ~2001
941830679188366135910 ~2001
941834483188366896710 ~2001
9418566071506970571311 ~2003
941860477565116286310 ~2002
941912879188382575910 ~2001
9419194811507071169711 ~2003
941944259188388851910 ~2001
941953559188390711910 ~2001
941964119188392823910 ~2001
941983571188396714310 ~2001
941987723188397544710 ~2001
Home
4.724.182 digits
e-mail
25-04-13