Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1016387819203277563910 ~2001
1016446523203289304710 ~2001
1016467601813174080910 ~2003
1016544541609926724710 ~2003
1016548901609929340710 ~2003
1016571971203314394310 ~2001
1016582939203316587910 ~2001
1016593619203318723910 ~2001
1016634191203326838310 ~2001
1016668259203333651910 ~2001
1016687519203337503910 ~2001
1016692619203338523910 ~2001
1016737199813389759310 ~2003
1016753261610051956710 ~2003
101677318914438179283912 ~2006
1016787851203357570310 ~2001
1016866751203373350310 ~2001
1016873303203374660710 ~2001
1016877671813502136910 ~2003
1016882579203376515910 ~2001
1016900723203380144710 ~2001
1016909219203381843910 ~2001
1016921293610152775910 ~2003
1016943491203388698310 ~2001
1016969951203393990310 ~2001
Exponent Prime Factor Digits Year
10169875631016987563111 ~2003
10170137594881666043311 ~2005
1017016811203403362310 ~2001
1017052499203410499910 ~2001
1017061739203412347910 ~2001
1017069611203413922310 ~2001
1017109871813687896910 ~2003
1017125099203425019910 ~2001
1017141011203428202310 ~2001
1017146051203429210310 ~2001
1017157331203431466310 ~2001
10171944191017194419111 ~2003
1017212461610327476710 ~2003
10172149871627543979311 ~2004
1017246071203449214310 ~2001
1017256139203451227910 ~2001
1017263657610358194310 ~2003
1017299021610379412710 ~2003
1017302651203460530310 ~2001
1017310979203462195910 ~2001
1017379691203475938310 ~2001
1017398771203479754310 ~2001
1017416843203483368710 ~2001
1017441851203488370310 ~2001
1017479399203495879910 ~2001
Exponent Prime Factor Digits Year
1017486131203497226310 ~2001
10175377911831568023911 ~2004
1017538199203507639910 ~2001
1017563303203512660710 ~2001
1017569711203513942310 ~2001
1017576779203515355910 ~2001
1017617459203523491910 ~2001
1017626663203525332710 ~2001
1017631871203526374310 ~2001
1017659243203531848710 ~2001
1017783551203556710310 ~2001
1017831359203566271910 ~2001
1017834071203566814310 ~2001
1017844811814275848910 ~2003
1017886871203577374310 ~2001
1017891239203578247910 ~2001
1017909301610745580710 ~2003
10179350471017935047111 ~2003
10179682337125777631111 ~2005
1018018103203603620710 ~2001
1018027019203605403910 ~2001
10180909812239800158311 ~2004
1018110539203622107910 ~2001
1018140611203628122310 ~2001
1018163483203632696710 ~2001
Exponent Prime Factor Digits Year
1018200917610920550310 ~2003
10182019672647325114311 ~2004
1018210079203642015910 ~2001
1018221731203644346310 ~2001
1018240511203648102310 ~2001
1018269061610961436710 ~2003
1018284557610970734310 ~2003
1018285319203657063910 ~2001
1018288079203657615910 ~2001
1018300319203660063910 ~2001
1018310141610986084710 ~2003
1018381271203676254310 ~2001
1018390873611034523910 ~2003
1018404011814723208910 ~2003
1018445651203689130310 ~2001
10184656672648010734311 ~2004
1018470443203694088710 ~2001
1018475879203695175910 ~2001
1018504511814803608910 ~2003
1018513403203702680710 ~2001
1018549331203709866310 ~2001
10186436693055931007111 ~2004
1018668491814934792910 ~2003
1018695011203739002310 ~2001
1018724639203744927910 ~2001
Home
4.768.925 digits
e-mail
25-05-04