Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1860377633720755279 ~1996
1860385433720770879 ~1996
1860450713720901439 ~1996
1860527993721055999 ~1996
1860587033721174079 ~1996
1860599633721199279 ~1996
186062581111637548710 ~1997
186067927334922268710 ~1998
186070421148856336910 ~1997
1860714713721429439 ~1996
1860751433721502879 ~1996
186080071334944127910 ~1998
1860801233721602479 ~1996
1860830633721661279 ~1996
1860847193721694399 ~1996
1860892193721784399 ~1996
1860896393721792799 ~1996
1860933113721866239 ~1996
1861039193722078399 ~1996
1861138913722277839 ~1996
186114727335006508710 ~1998
1861216793722433599 ~1996
1861219793722439599 ~1996
186123461111674076710 ~1997
1861423313722846639 ~1996
Exponent Prime Factor Digits Year
1861427513722855039 ~1996
186147163186147163110 ~1997
186147347148917877710 ~1997
1861512713723025439 ~1996
1861653833723307679 ~1996
1861701233723402479 ~1996
186175657111705394310 ~1997
1861773113723546239 ~1996
186181157148944925710 ~1997
186182279148945823310 ~1997
1861895513723791039 ~1996
1862002193724004399 ~1996
1862055833724111679 ~1996
1862065913724131839 ~1996
186207719148966175310 ~1997
1862107433724214879 ~1996
1862112713724225439 ~1996
186214817111728890310 ~1997
1862221193724442399 ~1996
186224317111734590310 ~1997
1862264993724529999 ~1996
1862282994059776918311 ~2001
1862294513724589039 ~1996
1862337113724674239 ~1996
186235417111741250310 ~1997
Exponent Prime Factor Digits Year
1862386913724773839 ~1996
1862430593724861199 ~1996
1862482913724965839 ~1996
186249523297999236910 ~1998
1862503913725007839 ~1996
1862527793725055599 ~1996
1862539811303777867111 ~1999
186258161111754896710 ~1997
1862585993725171999 ~1996
1862593793725187599 ~1996
1862631113725262239 ~1996
1862647793725295599 ~1996
186267119149013695310 ~1997
186271973111763183910 ~1997
1862723633725447279 ~1996
186273667335292600710 ~1998
186285271298056433710 ~1998
1862923433725846879 ~1996
1862951393725902799 ~1996
1862956913725913839 ~1996
1862987513725975039 ~1996
1863037913726075839 ~1996
1863065393726130799 ~1996
1863081233726162479 ~1996
1863094193726188399 ~1996
Exponent Prime Factor Digits Year
1863115793726231599 ~1996
186325547484446422310 ~1998
186328453111797071910 ~1997
1863334313726668639 ~1996
186335273111801163910 ~1997
1863369113726738239 ~1996
1863383633726767279 ~1996
186346933111808159910 ~1997
186351673111811003910 ~1997
1863567833727135679 ~1996
1863573713727147439 ~1996
1863593993727187999 ~1996
1863625313727250639 ~1996
1863635633727271279 ~1996
1863705113727410239 ~1996
1863712913727425839 ~1996
186371839186371839110 ~1997
1863739193727478399 ~1996
186378719149102975310 ~1997
186379639186379639110 ~1997
186382303298211684910 ~1998
1863846191528353875911 ~2000
1863849593727699199 ~1996
1863904193727808399 ~1996
1863931913727863839 ~1996
Home
4.768.925 digits
e-mail
25-05-04