Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1931201393862402799 ~1996
193122077154497661710 ~1997
193122287154497829710 ~1997
1931229713862459439 ~1996
1931277311120140839911 ~1999
1931286713862573439 ~1996
193131613115878967910 ~1997
1931341313862682639 ~1996
1931349233862698479 ~1996
193140721115884432710 ~1997
193143679193143679110 ~1997
1931445713862891439 ~1996
193170221115902132710 ~1997
1931741872781708292911 ~2000
1931763113863526239 ~1996
193178467772713868110 ~1999
1931811713863623439 ~1996
1931827193863654399 ~1996
1931888393863776799 ~1996
1931904113863808239 ~1996
193192973579578919110 ~1999
193202441115921464710 ~1997
1932039113864078239 ~1996
1932042233864084479 ~1996
1932085313864170639 ~1996
Exponent Prime Factor Digits Year
193209839347777710310 ~1998
1932218513864437039 ~1996
193222193115933315910 ~1997
193227869270519016710 ~1998
193233961115940376710 ~1997
193242121579726363110 ~1999
193246721154597376910 ~1997
193247773115948663910 ~1997
193249739154599791310 ~1997
193251319657054484710 ~1999
1932520433865040879 ~1996
1932523433865046879 ~1996
1932536393865072799 ~1996
193253789154603031310 ~1997
1932550913865101839 ~1996
1932554513865109039 ~1996
1932584633865169279 ~1996
1932620393865240799 ~1996
1932633731352843611111 ~1999
193264901115958940710 ~1997
1932748313865496639 ~1996
193277081115966248710 ~1997
1932774593865549199 ~1996
193282829154626263310 ~1997
1932877193865754399 ~1996
Exponent Prime Factor Digits Year
1932917817577037815311 ~2001
1932982913865965839 ~1996
1932986633865973279 ~1996
1933008233866016479 ~1996
193300871154640696910 ~1997
193305737154644589710 ~1997
193309019618588860910 ~1999
1933097991430492512711 ~2000
1933120734755476995911 ~2001
1933126433866252879 ~1996
1933140833866281679 ~1996
193315459193315459110 ~1997
1933224713866449439 ~1996
1933225793866451599 ~1996
1933290113866580239 ~1996
193333171193333171110 ~1997
1933338233866676479 ~1996
193337437116002462310 ~1997
1933388633866777279 ~1996
1933425593866851199 ~1996
1933439633866879279 ~1996
193347251928066804910 ~1999
1933493633866987279 ~1996
1933530713867061439 ~1996
193356227154684981710 ~1997
Exponent Prime Factor Digits Year
1933612793867225599 ~1996
1933670393867340799 ~1996
193373563464096551310 ~1998
1933850633867701279 ~1996
1933926233867852479 ~1996
193394197116036518310 ~1997
1933977833867955679 ~1996
1933994711585875662311 ~2000
193407509580222527110 ~1999
193409197309454715310 ~1998
193411693116047015910 ~1997
193415111154732088910 ~1997
1934219513868439039 ~1996
1934234033868468079 ~1996
193423697116054218310 ~1997
193426903193426903110 ~1997
1934297513868595039 ~1996
1934306513868613039 ~1996
193437709464250501710 ~1998
1934386913868773839 ~1996
1934420033868840079 ~1996
1934507393869014799 ~1996
1934597513869195039 ~1996
1934634233869268479 ~1996
1934651993869303999 ~1996
Home
4.724.182 digits
e-mail
25-04-13