Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1856649713713299439 ~1996
1856650433713300879 ~1996
1856701433713402879 ~1996
1856755193713510399 ~1996
1856763113713526239 ~1996
1856872313713744639 ~1996
1856880713713761439 ~1996
185688313111412987910 ~1997
185691679185691679110 ~1997
1856921633713843279 ~1996
18569340711884378048112 ~2002
1856934113713868239 ~1996
1856965793713931599 ~1996
1856966633713933279 ~1996
185703487185703487110 ~1997
185703653111422191910 ~1997
1857064313714128639 ~1996
185706743445696183310 ~1998
1857081113714162239 ~1996
185708777148567021710 ~1997
1857089513714179039 ~1996
185715193111429115910 ~1997
1857214793714429599 ~1996
185725301111435180710 ~1997
1857264233714528479 ~1996
Exponent Prime Factor Digits Year
1857293633714587279 ~1996
1857326993714653999 ~1996
1857341513714683039 ~1996
185734543297175268910 ~1998
1857389633714779279 ~1996
185740519185740519110 ~1997
1857408833714817679 ~1996
185742197445781272910 ~1998
1857446513714893039 ~1996
185750221297200353710 ~1998
1857561593715123199 ~1996
1857664791374671944711 ~1999
1857676433715352879 ~1996
185769163185769163110 ~1997
185769851148615880910 ~1997
185781857111469114310 ~1997
1857832193715664399 ~1996
1858066092192517986311 ~2000
1858082513716165039 ~1996
1858126193716252399 ~1996
1858227233716454479 ~1996
185826869148661495310 ~1997
1858293233716586479 ~1996
1858323233716646479 ~1996
1858348433716696879 ~1996
Exponent Prime Factor Digits Year
1858400513716801039 ~1996
1858406633716813279 ~1996
1858428593716857199 ~1996
185844661557533983110 ~1998
185844917111506950310 ~1997
185857207185857207110 ~1997
1858595993717191999 ~1996
1858614113717228239 ~1996
1858615193717230399 ~1996
1858633193717266399 ~1996
185864123594765193710 ~1999
1858662113717324239 ~1996
1858736513717473039 ~1996
1858762313717524639 ~1996
185876851185876851110 ~1997
185883437148706749710 ~1997
185891197111534718310 ~1997
185891333111534799910 ~1997
1858919393717838799 ~1996
185893157557679471110 ~1998
1858945913717891839 ~1996
1858995593717991199 ~1996
185908003185908003110 ~1997
1859156513718313039 ~1996
1859171291338603328911 ~1999
Exponent Prime Factor Digits Year
1859171393718342799 ~1996
1859197913718395839 ~1996
185920727446209744910 ~1998
185925239148740191310 ~1997
1859270993718541999 ~1996
1859328113718656239 ~1996
1859375393718750799 ~1996
185941837111565102310 ~1997
185943001855337804710 ~1999
1859465993718931999 ~1996
1859470313718940639 ~1996
185947631148758104910 ~1997
1859603033719206079 ~1996
1859685113719370239 ~1996
1859698793719397599 ~1996
185973629148778903310 ~1997
1859754113719508239 ~1996
1859791193719582399 ~1996
185990507148792405710 ~1997
185995813111597487910 ~1997
1859996033719992079 ~1996
1860161993720323999 ~1996
1860265913720531839 ~1996
1860299231971917183911 ~2000
186037693297660308910 ~1998
Home
4.768.925 digits
e-mail
25-05-04