Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1863939833727879679 ~1996
1864055033728110079 ~1996
1864081913728163839 ~1996
1864115393728230799 ~1996
1864132313728264639 ~1996
1864135672125114663911 ~2000
1864144193728288399 ~1996
1864175513728351039 ~1996
186419081111851448710 ~1997
186426481111855888710 ~1997
1864350593728701199 ~1996
186437677111862606310 ~1997
1864424691454251258311 ~1999
1864450793728901599 ~1996
186448313559344939110 ~1998
1864508393729016799 ~1996
186453577894977169710 ~1999
1864571633729143279 ~1996
1864588433729176879 ~1996
186462847186462847110 ~1997
186463493111878095910 ~1997
1864669793729339599 ~1996
1864747913729495839 ~1996
1864825193729650399 ~1996
1864846313729692639 ~1996
Exponent Prime Factor Digits Year
1864901513729803039 ~1996
1864936913729873839 ~1996
1864963793729927599 ~1996
1864994033729988079 ~1996
186500033111900019910 ~1997
186500477261100667910 ~1998
1865043713730087439 ~1996
1865207513730415039 ~1996
1865242913730485839 ~1996
186524431335743975910 ~1998
1865269193730538399 ~1996
1865349233730698479 ~1996
186537479149229983310 ~1997
1865390291007310756711 ~1999
1865411393730822799 ~1996
186542947335777304710 ~1998
186544753111926851910 ~1997
1865654993731309999 ~1996
1865705513731411039 ~1996
1865722794067275682311 ~2001
1865738993731477999 ~1996
186578533298525652910 ~1998
186584477149267581710 ~1997
186584701111950820710 ~1997
186589369447814485710 ~1998
Exponent Prime Factor Digits Year
186599459783717727910 ~1999
1866019313732038639 ~1996
1866019913732039839 ~1996
1866020993732041999 ~1996
186606397111963838310 ~1997
186606533261249146310 ~1998
1866232433732464879 ~1996
1866238313732476639 ~1996
1866306233732612479 ~1996
1866324233732648479 ~1996
1866337313732674639 ~1996
186638743298621988910 ~1998
1866423833732847679 ~1996
1866451913732903839 ~1996
1866472433732944879 ~1996
1866509633733019279 ~1996
1866511913733023839 ~1996
1866543233733086479 ~1996
1866577913733155839 ~1996
1866670313733340639 ~1996
186671531149337224910 ~1997
1866716033733432079 ~1996
1866796793733593599 ~1996
1866797393733594799 ~1996
1866821033733642079 ~1996
Exponent Prime Factor Digits Year
1866838793733677599 ~1996
1866870713733741439 ~1996
1866898193733796399 ~1996
1867005233734010479 ~1996
1867091993734183999 ~1996
1867139033734278079 ~1996
186714701112028820710 ~1997
1867191713734383439 ~1996
1867235993734471999 ~1996
1867341833734683679 ~1996
1867400033734800079 ~1996
1867419113734838239 ~1996
1867436814145709718311 ~2001
186745751149396600910 ~1997
1867630193735260399 ~1996
1867639313735278639 ~1996
1867658513735317039 ~1996
186767261149413808910 ~1997
1867685393735370799 ~1996
1867718633735437279 ~1996
1867797833735595679 ~1996
1867811513735623039 ~1996
1867845113735690239 ~1996
1868034833736069679 ~1996
1868054033736108079 ~1996
Home
4.768.925 digits
e-mail
25-05-04