Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
173881993104329195910 ~1997
173892353104335411910 ~1997
1738930631147694215911 ~1999
1738932833477865679 ~1995
1738945433477890879 ~1995
1738955033477910079 ~1995
1738961393477922799 ~1995
173897231139117784910 ~1997
173897953278236724910 ~1998
1739045471112989100911 ~1999
1739135393478270799 ~1995
173916007278265611310 ~1998
173920121104352072710 ~1997
173923219173923219110 ~1997
1739287193478574399 ~1995
1739324393478648799 ~1995
1739335313478670639 ~1995
1739391593478783199 ~1995
1739461913478923839 ~1995
1739478113478956239 ~1995
1739486393478972799 ~1995
1739501513479003039 ~1995
173956513104373907910 ~1997
173957681104374608710 ~1997
173958973104375383910 ~1997
Exponent Prime Factor Digits Year
1739671913479343839 ~1995
1739677193479354399 ~1995
173971271139177016910 ~1997
1739762513479525039 ~1995
1739819033479638079 ~1995
1739822993479645999 ~1995
173984513104390707910 ~1997
1739855513479711039 ~1995
1739868593479737199 ~1995
1739948513479897039 ~1995
173996701382792742310 ~1998
1740111713480223439 ~1995
1740135833480271679 ~1995
1740138113480276239 ~1995
1740161632505832747311 ~2000
1740205793480411599 ~1995
174021517278434427310 ~1998
1740215171218150619111
1740253913480507839 ~1995
1740261593480523199 ~1995
1740333233480666479 ~1995
1740340793480681599 ~1995
174038899417693357710 ~1998
174044789243662704710 ~1997
174055681104433408710 ~1997
Exponent Prime Factor Digits Year
1740573713481147439 ~1995
1740587513481175039 ~1995
1740612713481225439 ~1995
174061421104436852710 ~1997
1740651233481302479 ~1995
174067409139253927310 ~1997
1740848993481697999 ~1995
1740873833481747679 ~1995
1740889193481778399 ~1995
174096343417831223310 ~1998
1741039913482079839 ~1995
1741064033482128079 ~1995
1741106033482212079 ~1995
174113273104467963910 ~1997
1741165313482330639 ~1995
174118229139294583310 ~1997
174121097104472658310 ~1997
174121217104472730310 ~1997
1741235633482471279 ~1995
174125453104475271910 ~1997
1741386833482773679 ~1995
1741410593482821199 ~1995
174141953557254249710 ~1998
174150299313470538310 ~1998
1741563713483127439 ~1995
Exponent Prime Factor Digits Year
1741581131114611923311 ~1999
1741639193483278399 ~1995
174166541104499924710 ~1997
1741696433483392879 ~1995
1741709993483419999 ~1995
1741710833483421679 ~1995
1741736633483473279 ~1995
1741868993483737999 ~1995
174187963418051111310 ~1998
1741882433483764879 ~1995
174190019557408060910 ~1998
1741939313483878639 ~1995
174196327278714123310 ~1998
1741965593483931199 ~1995
174198733104519239910 ~1997
174200231452920600710 ~1998
1742046713484093439 ~1995
1742066033484132079 ~1995
1742126393484252799 ~1995
1742165993484331999 ~1995
1742194313484388639 ~1995
1742270513484541039 ~1995
1742364233484728479 ~1995
1742424233484848479 ~1995
1742495993484991999 ~1995
Home
4.724.182 digits
e-mail
25-04-13