Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2706586057732814...00039314 2024
27067610815154135221630312 ~2020
27067620071954135240143912 ~2020
2707105814471153...69642315 2025
27071597491154143194982312 ~2020
27073264184354146528368712 ~2020
27076029692354152059384712 ~2020
27076410523154152821046312 ~2020
27077167136354154334272712 ~2020
27077301397154154602794312 ~2020
27077731724354155463448712 ~2020
27078292586354156585172712 ~2020
27079364993954158729987912 ~2020
27083321876354166643752712 ~2020
27084413641154168827282312 ~2020
27085842671954171685343912 ~2020
27088834123154177668246312 ~2020
27089265107954178530215912 ~2020
27090232861154180465722312 ~2020
27090744115154181488230312 ~2020
27092000509154184001018312 ~2020
27110695423154221390846312 ~2020
27110971310354221942620712 ~2020
27111006703154222013406312 ~2020
27112784588354225569176712 ~2020
Exponent Prime Factor Dig. Year
27116313164354232626328712 ~2020
27117539749154235079498312 ~2020
27119027755154238055510312 ~2020
27121183613954242367227912 ~2020
27123327209954246654419912 ~2020
27124347197954248694395912 ~2020
27127898933954255797867912 ~2020
27130558417154261116834312 ~2020
27131360905154262721810312 ~2020
27131872556354263745112712 ~2020
27134297057954268594115912 ~2020
27138490043954276980087912 ~2020
27139153310354278306620712 ~2020
27143420069954286840139912 ~2020
27146921053154293842106312 ~2020
27151522415954303044831912 ~2020
27152011193954304022387912 ~2020
27152324867954304649735912 ~2020
27152426827154304853654312 ~2020
27152503022354305006044712 ~2020
27158372449154316744898312 ~2020
27161710418354323420836712 ~2020
2716323110112444...99099114 2024
27163605647954327211295912 ~2020
27165693200354331386400712 ~2020
Exponent Prime Factor Dig. Year
2716869336496031...27007914 2023
27172034225954344068451912 ~2020
27174024989954348049979912 ~2020
27175507219154351014438312 ~2020
2717836482495381...35330314 2023
27178647371954357294743912 ~2020
27180731006354361462012712 ~2020
27185380615154370761230312 ~2020
27185893835954371787671912 ~2020
2719003123931087...95720115 2023
27190893956354381787912712 ~2020
27191099317154382198634312 ~2020
27192939455954385878911912 ~2020
2719606341893916...32321714 2024
27196896161954393792323912 ~2020
27198353977154396707954312 ~2020
27199956872354399913744712 ~2020
27205327088354410654176712 ~2020
27205359131954410718263912 ~2020
27205870265954411740531912 ~2020
27205900712354411801424712 ~2020
27206767645154413535290312 ~2020
27207014285954414028571912 ~2020
2720998154399196...61838314 2023
27212707429154425414858312 ~2020
Exponent Prime Factor Dig. Year
27213482771954426965543912 ~2020
27213870338354427740676712 ~2020
27214577143154429154286312 ~2020
27214838407154429676814312 ~2020
27216158447954432316895912 ~2020
27218281759154436563518312 ~2020
2722109059512885...03080714 2024
27223261319954446522639912 ~2020
27227312503154454625006312 ~2020
27227424991154454849982312 ~2020
27230169875954460339751912 ~2020
27230212477154460424954312 ~2020
27230363204354460726408712 ~2020
27230453450354460906900712 ~2020
27232365181154464730362312 ~2020
27233071370354466142740712 ~2020
27233197505954466395011912 ~2020
27237001991954474003983912 ~2020
27238806181154477612362312 ~2020
27241933817954483867635912 ~2020
27244621280354489242560712 ~2020
27245465563154490931126312 ~2020
27254038292354508076584712 ~2020
2725662180473488...91001714 2024
27257009747954514019495912 ~2020
Home
4.768.925 digits
e-mail
25-05-04