Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
226444511394528890227911 ~2012
226450731234529014624711 ~2012
2264527605713587165634312 ~2013
2264591582918116732663312 ~2013
226463650194529273003911 ~2012
2264888586736238217387312 ~2014
226496318634529926372711 ~2012
226506135234530122704711 ~2012
226512046194530240923911 ~2012
226521634914530432698311 ~2012
2265229538918121836311312 ~2013
226523098914530461978311 ~2012
226523590434530471808711 ~2012
226526817834530536356711 ~2012
226537826394530756527911 ~2012
226541166594530823331911 ~2012
2265542893718124343149712 ~2013
226573999914531479998311 ~2012
2265807654136252922465712 ~2014
2265844724967975341747112 ~2015
226584906714531698134311 ~2012
226596595314531931906311 ~2012
226605323994532106479911 ~2012
2266479874718131838997712 ~2013
226648365114532967302311 ~2012
Exponent Prime Factor Dig. Year
2266497977313598987863912 ~2013
226662743034533254860711 ~2012
226662851394533257027911 ~2012
226668443634533368872711 ~2012
2266729468118133835744912 ~2013
226687974234533759484711 ~2012
226690873794533817475911 ~2012
226696181994533923639911 ~2012
2267001888736272030219312 ~2014
226704465234534089304711 ~2012
226714164594534283291911 ~2012
226728368994534567379911 ~2012
226744493514534889870311 ~2012
2267494590722674945907112 ~2014
2267533420322675334203112 ~2014
226774289514535485790311 ~2012
2267770233713606621402312 ~2013
226779908514535598170311 ~2012
2267871506918142972055312 ~2013
226796783634535935672711 ~2012
2267990021313607940127912 ~2013
226820275194536405503911 ~2012
2268291733313609750399912 ~2013
226829574714536591494311 ~2012
226829972034536599440711 ~2012
Exponent Prime Factor Dig. Year
226852044714537040894311 ~2012
2268522451713611134710312 ~2013
2268537772113611226632712 ~2013
226885521234537710424711 ~2012
226886289234537725784711 ~2012
226890325194537806503911 ~2012
2268941111918151528895312 ~2013
226906459314538129186311 ~2012
226915527834538310556711 ~2012
226924835634538496712711 ~2012
226931717514538634350311 ~2012
226934994834538699896711 ~2012
2269386532118155092256912 ~2013
226939612434538792248711 ~2012
2269510771118156086168912 ~2013
226956655434539133108711 ~2012
226963496034539269920711 ~2012
226974428514539488570311 ~2012
2269960998113619765988712 ~2013
227013390714540267814311 ~2012
227019968994540399379911 ~2012
227021468994540429379911 ~2012
2270402167313622413003912 ~2013
227043719514540874390311 ~2012
227044782714540895654311 ~2012
Exponent Prime Factor Dig. Year
2270576722118164613776912 ~2013
227058421194541168423911 ~2012
2270596729922705967299112 ~2014
227065020114541300402311 ~2012
227073227514541464550311 ~2012
227073478794541469575911 ~2012
227077728594541554571911 ~2012
227079203514541584070311 ~2012
2270809915922708099159112 ~2014
2270832735713624996414312 ~2013
227083980594541679611911 ~2012
227084123994541682479911 ~2012
227098997994541979959911 ~2012
2271021919313626131515912 ~2013
227102616114542052322311 ~2012
227127804114542556082311 ~2012
227128237794542564755911 ~2012
227128904634542578092711 ~2012
2271303931713627823590312 ~2013
2271456883118171655064912 ~2013
227155042194543100843911 ~2012
2271646936718173175493712 ~2013
227171403114543428062311 ~2012
2271808183313630849099912 ~2013
2271839839731805757755912 ~2014
Home
5.307.017 digits
e-mail
26-01-11