Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
27257740298354515480596712 ~2020
27259347431954518694863912 ~2020
27270681829154541363658312 ~2020
27272059238354544118476712 ~2020
27274200793154548401586312 ~2020
27277699130354555398260712 ~2020
27284976283154569952566312 ~2020
27285442649954570885299912 ~2020
27286073807954572147615912 ~2020
27286991498354573982996712 ~2020
27287377933154574755866312 ~2020
27289012928354578025856712 ~2020
27289698653954579397307912 ~2020
27290015053154580030106312 ~2020
27290219417954580438835912 ~2020
27296431955954592863911912 ~2020
27297495221954594990443912 ~2020
27298749107954597498215912 ~2020
27299035004354598070008712 ~2020
27300821219954601642439912 ~2020
27300951176354601902352712 ~2020
27302141251154604282502312 ~2020
27302724998354605449996712 ~2020
27302902475954605804951912 ~2020
27303523244354607046488712 ~2020
Exponent Prime Factor Dig. Year
27306786193154613572386312 ~2020
27312525415154625050830312 ~2020
27318942458354637884916712 ~2020
27319078187954638156375912 ~2020
27320176261154640352522312 ~2020
27320607401954641214803912 ~2020
27321643784354643287568712 ~2020
2732302714671005...89985715 2025
27325740715154651481430312 ~2020
27326271092354652542184712 ~2020
27326479265954652958531912 ~2020
27328657375154657314750312 ~2020
27329705617154659411234312 ~2020
27330289889954660579779912 ~2020
27332986771154665973542312 ~2020
27341523863954683047727912 ~2020
27342987769154685975538312 ~2020
27343497077954686994155912 ~2020
27343514159954687028319912 ~2020
27344482358354688964716712 ~2020
27345601651154691203302312 ~2020
2734730041095250...78892914 2023
27349889749154699779498312 ~2020
27351259529954702519059912 ~2020
27352503697154705007394312 ~2020
Exponent Prime Factor Dig. Year
2735383741573938...87860914 2023
2735531683374814...62731314 2024
27357598250354715196500712 ~2020
27358667234354717334468712 ~2020
27358828825154717657650312 ~2020
27362299064354724598128712 ~2020
27364482890354728965780712 ~2020
27366658543154733317086312 ~2020
27368903006354737806012712 ~2020
27369684997154739369994312 ~2020
27381113491154762226982312 ~2020
27382983733154765967466312 ~2020
27388175531954776351063912 ~2020
27389709341954779418683912 ~2020
27394083241154788166482312 ~2020
27399800981954799601963912 ~2020
2740104021734554...41152715 2023
27402916916354805833832712 ~2020
27405741361154811482722312 ~2020
27406779368354813558736712 ~2020
27415101581954830203163912 ~2020
27415202203154830404406312 ~2020
27420702248354841404496712 ~2020
27422113361954844226723912 ~2020
27422566525154845133050312 ~2020
Exponent Prime Factor Dig. Year
27428996399954857992799912 ~2020
27432069143954864138287912 ~2020
27433515277154867030554312 ~2020
27433640882354867281764712 ~2020
27436505657954873011315912 ~2020
27436522724354873045448712 ~2020
2743864323111322...37390315 2024
27439983031154879966062312 ~2020
27440283722354880567444712 ~2020
27440505230354881010460712 ~2020
27442743223154885486446312 ~2020
2744297607015708...22580914 2023
27443238686354886477372712 ~2020
27446355371954892710743912 ~2020
27449193089954898386179912 ~2020
27449586944354899173888712 ~2020
27452011631954904023263912 ~2020
27452863183154905726366312 ~2020
27453818765954907637531912 ~2020
27454062467954908124935912 ~2020
27455045444354910090888712 ~2020
27458686255154917372510312 ~2020
27459832823954919665647912 ~2020
27464664908354929329816712 ~2020
27464891833154929783666312 ~2020
Home
4.768.925 digits
e-mail
25-05-04