Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
293966907235879338144711 ~2013
293984998435879699968711 ~2013
2939959793317639758759912 ~2014
293997008995879940179911 ~2013
294005922235880118444711 ~2013
294012341395880246827911 ~2013
294017411635880348232711 ~2013
294032425795880648515911 ~2013
294035795395880715907911 ~2013
294046102195880922043911 ~2013
294046332115880926642311 ~2013
2940521646117643129876712 ~2014
294060222595881204451911 ~2013
294065909035881318180711 ~2013
294070297795881405955911 ~2013
2940724997952933049962312 ~2015
294087963115881759262311 ~2013
294099142915881982858311 ~2013
294128139715882562794311 ~2013
2941429314117648575884712 ~2014
294152491195883049823911 ~2013
294166819195883336383911 ~2013
294187756195883755123911 ~2013
294189513235883790264711 ~2013
294195618235883912364711 ~2013
Exponent Prime Factor Dig. Year
2942431718923539453751312 ~2014
294247226995884944539911 ~2013
2942637744147082203905712 ~2015
294267103315885342066311 ~2013
294277921435885558428711 ~2013
2942948149123543585192912 ~2014
294298737835885974756711 ~2013
294302064235886041284711 ~2013
294302458435886049168711 ~2013
294306958315886139166311 ~2013
2943100921929431009219112 ~2015
294340800595886816011911 ~2013
294342748195886854963911 ~2013
2943436758752981861656712 ~2015
294365163595887303271911 ~2013
294375660835887513216711 ~2013
2944118029717664708178312 ~2014
2944252115923554016927312 ~2014
294428669035888573380711 ~2013
294430135315888602706311 ~2013
294442520395888850407911 ~2013
294447145435888942908711 ~2013
294494307715889886154311 ~2013
2945088871717670533230312 ~2014
294514782715890295654311 ~2013
Exponent Prime Factor Dig. Year
294524022115890480442311 ~2013
294553973515891079470311 ~2013
2945754379929457543799112 ~2015
294583939315891678786311 ~2013
294586058995891721179911 ~2013
294593270395891865407911 ~2013
294600068995892001379911 ~2013
294619770595892395411911 ~2013
294621469195892429383911 ~2013
294640182715892803654311 ~2013
294652040395893040807911 ~2013
294657211435893144228711 ~2013
294662919835893258396711 ~2013
2946673010923573384087312 ~2014
294676270195893525403911 ~2013
294680758315893615166311 ~2013
294685873315893717466311 ~2013
294698168515893963370311 ~2013
294705640315894112806311 ~2013
294727288915894545778311 ~2013
294729640435894592808711 ~2013
2947504113129475041131112 ~2015
294756085795895121715911 ~2013
294758109715895162194311 ~2013
294781481515895629630311 ~2013
Exponent Prime Factor Dig. Year
294795623635895912472711 ~2013
294804367315896087346311 ~2013
294808420195896168403911 ~2013
294809098315896181966311 ~2013
294814769035896295380711 ~2013
294819894972834...00315315 2025
294827368915896547378311 ~2013
294829456435896589128711 ~2013
2948353465717690120794312 ~2014
294847521835896950436711 ~2013
2948514703317691088219912 ~2014
294851769115897035382311 ~2013
294873881035897477620711 ~2013
2948802654147180842465712 ~2015
294880537195897610743911 ~2013
2948987926723591903413712 ~2014
294898949395897978987911 ~2013
294902606035898052120711 ~2013
294911972995898239459911 ~2013
294928903795898578075911 ~2013
294942086035898841720711 ~2013
294944515795898890315911 ~2013
294951123595899022471911 ~2013
294975157915899503158311 ~2013
2949832885741297660399912 ~2015
Home
5.307.017 digits
e-mail
26-01-11