Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
21186831155942373662311912 ~2019
2118894727572500...78532714 2024
21190790825942381581651912 ~2019
21191534129942383068259912 ~2019
2119173819432543...83316114 2024
21192939008342385878016712 ~2019
21193670984342387341968712 ~2019
21195804539942391609079912 ~2019
21196489573142392979146312 ~2019
21197245835942394491671912 ~2019
21200545121942401090243912 ~2019
21203815675142407631350312 ~2019
21204039017942408078035912 ~2019
21204321524342408643048712 ~2019
21207209603942414419207912 ~2019
21208847371142417694742312 ~2019
21209342923142418685846312 ~2019
21210487916342420975832712 ~2019
21211903448342423806896712 ~2019
2121305474815260...77528914 2024
21213785237942427570475912 ~2019
21215449255142430898510312 ~2019
21215474251142430948502312 ~2019
21217883930342435767860712 ~2019
21220591184342441182368712 ~2019
Exponent Prime Factor Dig. Year
21221804453942443608907912 ~2019
21222284215142444568430312 ~2019
21222314399942444628799912 ~2019
21224730163142449460326312 ~2019
21224903719142449807438312 ~2019
21225082931942450165863912 ~2019
21226320619142452641238312 ~2019
21227077586342454155172712 ~2019
21228375655142456751310312 ~2019
21230744558342461489116712 ~2019
21231621523142463243046312 ~2019
21231974066342463948132712 ~2019
21232926206342465852412712 ~2019
21235862054342471724108712 ~2019
21238559750342477119500712 ~2019
21243263429942486526859912 ~2019
2124459705432549...46516114 2024
21244781888342489563776712 ~2019
21245937512342491875024712 ~2019
21249384206342498768412712 ~2019
21251325749942502651499912 ~2019
21251456249942502912499912 ~2019
21251973578342503947156712 ~2019
2125207451891270...62302315 2023
21252547409942505094819912 ~2019
Exponent Prime Factor Dig. Year
2125443488294080...97516914 2023
21255040976342510081952712 ~2019
21256873217942513746435912 ~2019
21257229083942514458167912 ~2019
21257646308342515292616712 ~2019
21258739307942517478615912 ~2019
21259783139942519566279912 ~2019
21260896993142521793986312 ~2019
2126470520773912...58216914 2024
21266073680342532147360712 ~2019
21266382488342532764976712 ~2019
21266451494342532902988712 ~2019
21266721685142533443370312 ~2019
21271447709942542895419912 ~2019
21277379012342554758024712 ~2019
2127778154332681...74455914 2024
21278935727942557871455912 ~2019
21278988653942557977307912 ~2019
21281538257942563076515912 ~2019
21281739986342563479972712 ~2019
21284997329942569994659912 ~2019
21287655539942575311079912 ~2019
21288524309942577048619912 ~2019
21290402603942580805207912 ~2019
21290637431942581274863912 ~2019
Exponent Prime Factor Dig. Year
21290702270342581404540712 ~2019
2129123775472427...04035914 2024
2129178835313747...50145714 2024
21292325168342584650336712 ~2019
21293004755942586009511912 ~2019
21293116319942586232639912 ~2019
21300278033942600556067912 ~2019
21301485248342602970496712 ~2019
21302204309942604408619912 ~2019
21304662584342609325168712 ~2019
21306559961942613119923912 ~2019
21307692344342615384688712 ~2019
21307840747142615681494312 ~2019
21308570347142617140694312 ~2019
2130865084873068...22212914 2024
21308877794342617755588712 ~2019
21310173593942620347187912 ~2019
21311818435142623636870312 ~2019
21313940204342627880408712 ~2019
21314074547942628149095912 ~2019
21314433209942628866419912 ~2019
21315650923142631301846312 ~2019
21316152671942632305343912 ~2019
21316458883142632917766312 ~2019
2131677904435158...28720714 2024
Home
4.768.925 digits
e-mail
25-05-04