Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
21038153381942076306763912 ~2019
21039066677942078133355912 ~2019
2103927482832735...27679114 2024
21042523991942085047983912 ~2019
21043300193942086600387912 ~2019
2104576561091515...23984914 2024
21048684865142097369730312 ~2019
21049197155942098394311912 ~2019
21050163589142100327178312 ~2019
21051944779142103889558312 ~2019
21052950001142105900002312 ~2019
21054021031142108042062312 ~2019
21055551296342111102592712 ~2019
21057376826342114753652712 ~2019
21057764357942115528715912 ~2019
21060566009942121132019912 ~2019
21062113699142124227398312 ~2019
21065260463942130520927912 ~2019
21066016718342132033436712 ~2019
21067356224342134712448712 ~2019
21067746554342135493108712 ~2019
21069673085942139346171912 ~2019
21072452899142144905798312 ~2019
21075961789142151923578312 ~2019
21076986391142153972782312 ~2019
Exponent Prime Factor Dig. Year
21078900014342157800028712 ~2019
2108040341271167...90635915 2023
21081428363942162856727912 ~2019
21084367939142168735878312 ~2019
21085237885142170475770312 ~2019
21086998255142173996510312 ~2019
21087557669942175115339912 ~2019
21087990817142175981634312 ~2019
21088861046342177722092712 ~2019
21089237312342178474624712 ~2019
21092130488342184260976712 ~2019
21092538125942185076251912 ~2019
21093388334342186776668712 ~2019
21095023865942190047731912 ~2019
21095518855142191037710312 ~2019
21096577867142193155734312 ~2019
2110115846214684...78586314 2023
21101212931942202425863912 ~2019
21103427276342206854552712 ~2019
21103530775142207061550312 ~2019
21106020697142212041394312 ~2019
21106176995942212353991912 ~2019
21106350061142212700122312 ~2019
21106503769142213007538312 ~2019
21107514725942215029451912 ~2019
Exponent Prime Factor Dig. Year
21107915798342215831596712 ~2019
21109556639942219113279912 ~2019
21112304641142224609282312 ~2019
21112870655942225741311912 ~2019
21113944811942227889623912 ~2019
21114032953142228065906312 ~2019
21114353432342228706864712 ~2019
21114616100342229232200712 ~2019
21115200446342230400892712 ~2019
21116029729142232059458312 ~2019
21116815247942233630495912 ~2019
21118105393142236210786312 ~2019
21121006754342242013508712 ~2019
2112203939212703...42188914 2024
21123730280342247460560712 ~2019
21124708382342249416764712 ~2019
2112653204637478...44390314 2023
21127091803142254183606312 ~2019
21128233022342256466044712 ~2019
21130549123142261098246312 ~2019
2113429914491648...33302314 2024
21134677115942269354231912 ~2019
21135321974342270643948712 ~2019
21136957496342273914992712 ~2019
21138666613142277333226312 ~2019
Exponent Prime Factor Dig. Year
21139784012342279568024712 ~2019
21141670238342283340476712 ~2019
21145874071142291748142312 ~2019
21148675076342297350152712 ~2019
21151465943942302931887912 ~2019
21156980114342313960228712 ~2019
21157908877142315817754312 ~2019
21158019626342316039252712 ~2019
2115841740733512...89611914 2024
2115904043092708...75155314 2024
21164431489142328862978312 ~2019
21164440004342328880008712 ~2019
21165117553142330235106312 ~2019
21165731834342331463668712 ~2019
21167526398342335052796712 ~2019
21170520698342341041396712 ~2019
21171601429142343202858312 ~2019
21175815149942351630299912 ~2019
21176318549942352637099912 ~2019
21179545151942359090303912 ~2019
21181276375142362552750312 ~2019
21182065361942364130723912 ~2019
21182367395942364734791912 ~2019
21182888042342365776084712 ~2019
21183717149942367434299912 ~2019
Home
4.768.925 digits
e-mail
25-05-04