Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13359429023926718858047912 ~2018
13360056955126720113910312 ~2018
13360531376326721062752712 ~2018
13360916387926721832775912 ~2018
13362036625126724073250312 ~2018
13363235731126726471462312 ~2018
13363543595926727087191912 ~2018
13363805531926727611063912 ~2018
13363954292326727908584712 ~2018
13364191693126728383386312 ~2018
13365154265926730308531912 ~2018
1336541778971577...99184714 2024
13365630296326731260592712 ~2018
13366024919926732049839912 ~2018
13370096947126740193894312 ~2018
13370477713126740955426312 ~2018
13370535965926741071931912 ~2018
1337132375091099...23239915 2025
13371453649126742907298312 ~2018
13372112492326744224984712 ~2018
13372121969926744243939912 ~2018
13372846097926745692195912 ~2018
13373182513126746365026312 ~2018
13373313241126746626482312 ~2018
13373948923126747897846312 ~2018
Exponent Prime Factor Dig. Year
13375472719126750945438312 ~2018
13375954711126751909422312 ~2018
13376521124326753042248712 ~2018
1337659901032153...06583115 2025
13377575645926755151291912 ~2018
13377940003126755880006312 ~2018
13378436651926756873303912 ~2018
13378947665926757895331912 ~2018
13379516195926759032391912 ~2018
13380827120326761654240712 ~2018
13383707413126767414826312 ~2018
13384569349126769138698312 ~2018
1338477603113212...47464114 2024
13385972375926771944751912 ~2018
13386553496326773106992712 ~2018
13386644053126773288106312 ~2018
13387670522326775341044712 ~2018
13388134381126776268762312 ~2018
13389520117126779040234312 ~2018
13389778507126779557014312 ~2018
13390110833926780221667912 ~2018
13390117595926780235191912 ~2018
13390889501926781779003912 ~2018
13391571215926783142431912 ~2018
13394690147926789380295912 ~2018
Exponent Prime Factor Dig. Year
1339522239832277...07711114 2025
13395405289126790810578312 ~2018
1339603794792572...85996914 2024
13396551968326793103936712 ~2018
13397261581126794523162312 ~2018
13397579519926795159039912 ~2018
13398047669926796095339912 ~2018
13399741769926799483539912 ~2018
13400797597126801595194312 ~2018
13401972629926803945259912 ~2018
13402020326326804040652712 ~2018
13402220816326804441632712 ~2018
13403497351126806994702312 ~2018
13404211535926808423071912 ~2018
13406556239926813112479912 ~2018
13409031107926818062215912 ~2018
1340959245313030...94400714 2024
13410076118326820152236712 ~2018
13410857293126821714586312 ~2018
1341102036591772...23719915 2024
13411126141126822252282312 ~2018
13411305551926822611103912 ~2018
13411705003126823410006312 ~2018
13412131585126824263170312 ~2018
13412496596326824993192712 ~2018
Exponent Prime Factor Dig. Year
13413908857126827817714312 ~2018
13415097638326830195276712 ~2018
13418359745926836719491912 ~2018
13419220229926838440459912 ~2018
13419671461126839342922312 ~2018
13420040053126840080106312 ~2018
13421624372326843248744712 ~2018
13422688573126845377146312 ~2018
13423284985126846569970312 ~2018
13423893511126847787022312 ~2018
13424357150326848714300712 ~2018
13425506375926851012751912 ~2018
13426636307926853272615912 ~2018
13426790618326853581236712 ~2018
13426876957126853753914312 ~2018
13427682133126855364266312 ~2018
13428481538326856963076712 ~2018
13428953783926857907567912 ~2018
13430336023126860672046312 ~2018
13430950975126861901950312 ~2018
13431148928326862297856712 ~2018
13431835853926863671707912 ~2018
13432005703126864011406312 ~2018
13434074600326868149200712 ~2018
13437574241926875148483912 ~2018
Home
4.768.925 digits
e-mail
25-05-04