Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13256936281126513872562312 ~2018
13257106477126514212954312 ~2018
13257481780179544890680712 ~2019
13258640058179551840348712 ~2019
13259517373126519034746312 ~2018
13259904565126519809130312 ~2018
13260536311779563217870312 ~2019
13260704839126521409678312 ~2018
13260965105926521930211912 ~2018
13261007390326522014780712 ~2018
13263273536326526547072712 ~2018
13263948319126527896638312 ~2018
13264723333126529446666312 ~2018
13266067949926532135899912 ~2018
13266191323126532382646312 ~2018
13269114919126538229838312 ~2018
13270299596326540599192712 ~2018
1327126770293822...98435314 2024
13271277755926542555511912 ~2018
13271840623126543681246312 ~2018
13276609703926553219407912 ~2018
13280452669126560905338312 ~2018
13281781505926563563011912 ~2018
13282052150326564104300712 ~2018
13282499276326564998552712 ~2018
Exponent Prime Factor Dig. Year
13282562774326565125548712 ~2018
13283006435926566012871912 ~2018
13287523513126575047026312 ~2018
13288511636326577023272712 ~2018
13291243262326582486524712 ~2018
13291829993926583659987912 ~2018
13292116859926584233719912 ~2018
13292569118326585138236712 ~2018
13292840215126585680430312 ~2018
13293054881926586109763912 ~2018
13293263101126586526202312 ~2018
13295157967126590315934312 ~2018
13297712270326595424540712 ~2018
13298713160326597426320712 ~2018
13299212515126598425030312 ~2018
13300019327926600038655912 ~2018
13300685903926601371807912 ~2018
13302621977926605243955912 ~2018
13302877967926605755935912 ~2018
13303336403926606672807912 ~2018
13303791230326607582460712 ~2018
13305155690326610311380712 ~2018
13307679281926615358563912 ~2018
13308713395126617426790312 ~2018
13308839282326617678564712 ~2018
Exponent Prime Factor Dig. Year
13309510921126619021842312 ~2018
13311032977126622065954312 ~2018
13311393026326622786052712 ~2018
13312875158326625750316712 ~2018
13315675987126631351974312 ~2018
13316613191926633226383912 ~2018
13317671516326635343032712 ~2018
1332026261892850...00444714 2024
13321500469126643000938312 ~2018
13321822717126643645434312 ~2018
13321854359926643708719912 ~2018
13322671736326645343472712 ~2018
13327363379926654726759912 ~2018
13327424855926654849711912 ~2018
13328440153126656880306312 ~2018
13328637889126657275778312 ~2018
13328927924326657855848712 ~2018
13329197011126658394022312 ~2018
13329433598326658867196712 ~2018
1333004870692985...10345714 2024
13332039023926664078047912 ~2018
13334352521926668705043912 ~2018
13336187408326672374816712 ~2018
13338180919126676361838312 ~2018
13338357341926676714683912 ~2018
Exponent Prime Factor Dig. Year
13338555869926677111739912 ~2018
13338708806326677417612712 ~2018
13339256492326678512984712 ~2018
13339276142326678552284712 ~2018
13340448919126680897838312 ~2018
13341048965926682097931912 ~2018
13342916564326685833128712 ~2018
13344074402326688148804712 ~2018
13344352667926688705335912 ~2018
13345017815926690035631912 ~2018
13345080908326690161816712 ~2018
13345411565926690823131912 ~2018
13345770079126691540158312 ~2018
13345839770326691679540712 ~2018
13345970549926691941099912 ~2018
13345970585926691941171912 ~2018
13347125251126694250502312 ~2018
13349165437126698330874312 ~2018
13350383921926700767843912 ~2018
1335159255234833...03932714 2023
13352649451126705298902312 ~2018
13355039375926710078751912 ~2018
13356767189926713534379912 ~2018
13358078021926716156043912 ~2018
13358302676326716605352712 ~2018
Home
4.768.925 digits
e-mail
25-05-04