Home Free Reseller Hosting Program, Liquid Plan Builder, Multi-Currency Payments e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
20910026165941820052331912 ~2019
20910551615941821103231912 ~2019
20910601694341821203388712 ~2019
20910844099141821688198312 ~2019
2091228412995228...32475114 2023
20913158617141826317234312 ~2019
20913206999941826413999912 ~2019
20913413501941826827003912 ~2019
2091381049331100...19475915 2025
20915709974341831419948712 ~2019
20916009373141832018746312 ~2019
20916411433141832822866312 ~2019
20917900249141835800498312 ~2019
20919145429141838290858312 ~2019
20920703276341841406552712 ~2019
20923934149141847868298312 ~2019
20931763265941863526531912 ~2019
20931768509941863537019912 ~2019
20932720747141865441494312 ~2019
20932890419941865780839912 ~2019
20935349333941870698667912 ~2019
20936054948341872109896712 ~2019
20936999815141873999630312 ~2019
20938220801941876441603912 ~2019
20938243123141876486246312 ~2019
Exponent Prime Factor Dig. Year
20940197789941880395579912 ~2019
20941273964341882547928712 ~2019
2094165608171465...25719114 2024
20947476167941894952335912 ~2019
20949146903941898293807912 ~2019
20951204233141902408466312 ~2019
20953077392341906154784712 ~2019
20953948447141907896894312 ~2019
2095458571211253...55835915 2025
20955265751941910531503912 ~2019
20956064222341912128444712 ~2019
20956535762341913071524712 ~2019
20957956633141915913266312 ~2019
20958300281941916600563912 ~2019
20958712028341917424056712 ~2019
20960814889141921629778312 ~2019
20961092462341922184924712 ~2019
20962729856341925459712712 ~2019
20963773604341927547208712 ~2019
20965130204341930260408712 ~2019
20965576219141931152438312 ~2019
20966607488341933214976712 ~2019
20966919247141933838494312 ~2019
20967070769941934141539912 ~2019
20967180851941934361703912 ~2019
Exponent Prime Factor Dig. Year
20972531681941945063363912 ~2019
20973004903141946009806312 ~2019
20974137992341948275984712 ~2019
20974213825141948427650312 ~2019
20974220845141948441690312 ~2019
20976682795141953365590312 ~2019
20977149824341954299648712 ~2019
20978522971141957045942312 ~2019
20981798635141963597270312 ~2019
20982750067141965500134312 ~2019
20985582269941971164539912 ~2019
20986907282341973814564712 ~2019
20990428310341980856620712 ~2019
20990795785141981591570312 ~2019
20991369313141982738626312 ~2019
20991730747141983461494312 ~2019
20992540004341985080008712 ~2019
20992818203941985636407912 ~2019
20992987147141985974294312 ~2019
20993887301941987774603912 ~2019
20995419535141990839070312 ~2019
20995589504341991179008712 ~2019
20999560850341999121700712 ~2019
2100241520171848...37749714 2024
21004456873142008913746312 ~2019
Exponent Prime Factor Dig. Year
21005533241942011066483912 ~2019
2100735680992184...08229714 2024
21008470393142016940786312 ~2019
21013425401942026850803912 ~2019
21014415043142028830086312 ~2019
21015059219942030118439912 ~2019
21015286277942030572555912 ~2019
21016282553942032565107912 ~2019
21016916828342033833656712 ~2019
21018155375942036310751912 ~2019
21018517868342037035736712 ~2019
21019451929142038903858312 ~2019
21019898411942039796823912 ~2019
21021467132342042934264712 ~2019
21023120318342046240636712 ~2019
21023915294342047830588712 ~2019
2102481807118956...98288714 2023
21025289519942050579039912 ~2019
21027385193942054770387912 ~2019
21030385658342060771316712 ~2019
21031987904342063975808712 ~2019
21033385409942066770819912 ~2019
21036571291142073142582312 ~2019
2103670478111804...02183915 2024
2103763739034922...49330314 2023
Home
4.768.925 digits
e-mail
25-05-04