Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10634259575921268519151912 ~2017
10634465479763806792878312 ~2018
10634636023121269272046312 ~2017
10636038457363816230743912 ~2018
10637726726321275453452712 ~2017
10637861879921275723759912 ~2017
10638079238321276158476712 ~2017
10638169895921276339791912 ~2017
10638487877921276975755912 ~2017
10639699976321279399952712 ~2017
10640369945921280739891912 ~2017
10640515619921281031239912 ~2017
10641143015921282286031912 ~2017
10642246081121284492162312 ~2017
10643202583121286405166312 ~2017
10643558612321287117224712 ~2017
10643703251921287406503912 ~2017
10644463616321288927232712 ~2017
10644741005921289482011912 ~2017
10644842635121289685270312 ~2017
10645184285921290368571912 ~2017
10645412060321290824120712 ~2017
10645607255921291214511912 ~2017
10646438963921292877927912 ~2017
10648464133121296928266312 ~2017
Exponent Prime Factor Dig. Year
10649703349121299406698312 ~2017
10653028178321306056356712 ~2017
10653168983921306337967912 ~2017
1065378076432039...82870315 2023
10654724953121309449906312 ~2017
10655734343921311468687912 ~2017
10655827031921311654063912 ~2017
10656209300321312418600712 ~2017
10657790017121315580034312 ~2017
10658821019921317642039912 ~2017
10658952059363953712355912 ~2018
10658994563921317989127912 ~2017
10659523052321319046104712 ~2017
10659986315921319972631912 ~2017
10660303601921320607203912 ~2017
10660829737121321659474312 ~2017
10660965799121321931598312 ~2017
10661003251363966019507912 ~2018
10663589173121327178346312 ~2017
10663963577921327927155912 ~2017
10664022109121328044218312 ~2017
10664073077363984438463912 ~2018
10664093929121328187858312 ~2017
10665491616163992949696712 ~2018
1066573281717359...43799114 2024
Exponent Prime Factor Dig. Year
10666282439921332564879912 ~2017
10666462261121332924522312 ~2017
10666487531921332975063912 ~2017
10666672031364000032187912 ~2018
10669090251764014541510312 ~2018
10669200925121338401850312 ~2017
10669340424164016042544712 ~2018
10669880072321339760144712 ~2017
10670302651121340605302312 ~2017
10670443442321340886884712 ~2017
10671322826321342645652712 ~2017
10671341753921342683507912 ~2017
10672101139364032606835912 ~2018
10674057323921348114647912 ~2017
10675334983121350669966312 ~2017
1067554657793330...32304914 2024
10676743615121353487230312 ~2017
10677801647364066809883912 ~2018
10678140569364068843415912 ~2018
10678268227121356536454312 ~2017
10678540463921357080927912 ~2017
10678918027121357836054312 ~2017
10679031823121358063646312 ~2017
10679465225921358930451912 ~2017
10679653009121359306018312 ~2017
Exponent Prime Factor Dig. Year
10679716129121359432258312 ~2017
10680788279921361576559912 ~2017
10681576723121363153446312 ~2017
10682580871121365161742312 ~2017
10683877621121367755242312 ~2017
10684745471364108472827912 ~2018
10686056653121372113306312 ~2017
10686170798321372341596712 ~2017
1068654781912586...72222314 2024
10687186976321374373952712 ~2017
10687553773121375107546312 ~2017
10688591131121377182262312 ~2017
10689214658321378429316712 ~2017
10689819548321379639096712 ~2017
10690005163121380010326312 ~2017
10690105106321380210212712 ~2017
10690133252321380266504712 ~2017
10691166535121382333070312 ~2017
10692708691121385417382312 ~2017
1069423576311206...40776915 2025
10695077894321390155788712 ~2017
10696029464321392058928712 ~2017
10696568677121393137354312 ~2017
10698653675921397307351912 ~2017
10699157431121398314862312 ~2017
Home
4.768.925 digits
e-mail
25-05-04