Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13981601065127963202130312 ~2018
13982375963927964751927912 ~2018
13982511968327965023936712 ~2018
13982901469127965802938312 ~2018
13984942657127969885314312 ~2018
13986612437927973224875912 ~2018
13988036876327976073752712 ~2018
13989003596327978007192712 ~2018
13989916135127979832270312 ~2018
13989942608327979885216712 ~2018
13992822505127985645010312 ~2018
13996940125127993880250312 ~2018
13997525858327995051716712 ~2018
13999202665127998405330312 ~2018
13999755200327999510400712 ~2018
13999759082327999518164712 ~2018
14000106935928000213871912 ~2018
14001882145128003764290312 ~2018
14001989987928003979975912 ~2018
14002168909128004337818312 ~2018
14002739480328005478960712 ~2018
1400386635772352...48093714 2024
14004542873928009085747912 ~2018
14004875605128009751210312 ~2018
14005323463128010646926312 ~2018
Exponent Prime Factor Dig. Year
14007050387928014100775912 ~2018
14012660894328025321788712 ~2018
14013802892328027605784712 ~2018
14013877633128027755266312 ~2018
14014460761128028921522312 ~2018
14015483294328030966588712 ~2018
14015521195128031042390312 ~2018
1401622186333588...97004914 2023
14017447855128034895710312 ~2018
14018817776328037635552712 ~2018
14019370118328038740236712 ~2018
14019715273128039430546312 ~2018
14023410488328046820976712 ~2018
14024018213928048036427912 ~2018
14025477293928050954587912 ~2018
14027088092328054176184712 ~2018
14027553977928055107955912 ~2018
14032625576328065251152712 ~2018
14032736717928065473435912 ~2018
14034575191128069150382312 ~2018
14036269219128072538438312 ~2018
14037067069128074134138312 ~2018
1403845765333453...82711914 2023
14042666797128085333594312 ~2018
14042756111928085512223912 ~2018
Exponent Prime Factor Dig. Year
14045411165928090822331912 ~2018
14045803549128091607098312 ~2018
14047484000328094968000712 ~2018
14048757569928097515139912 ~2018
14050607431128101214862312 ~2018
14052361763928104723527912 ~2018
14052415013928104830027912 ~2018
14053230475128106460950312 ~2018
14053404061128106808122312 ~2018
14054321255928108642511912 ~2018
1405656925692586...43269714 2025
14057791879128115583758312 ~2018
14057922680328115845360712 ~2018
14058565037928117130075912 ~2018
14058710492328117420984712 ~2018
14059276964328118553928712 ~2018
14059746236328119492472712 ~2018
14060258648328120517296712 ~2018
14060648725128121297450312 ~2018
1406097517493149...39177714 2024
14061397741128122795482312 ~2018
14061765067128123530134312 ~2018
14062440715128124881430312 ~2018
14063290334328126580668712 ~2018
14063593379928127186759912 ~2018
Exponent Prime Factor Dig. Year
14064584395128129168790312 ~2018
14064911240328129822480712 ~2018
14065359949128130719898312 ~2018
14070229316328140458632712 ~2018
14072126989128144253978312 ~2018
14073602621928147205243912 ~2018
14074133831928148267663912 ~2018
1407475473774475...06588714 2024
1407567265273856...06839914 2024
14078904248328157808496712 ~2018
14078942039928157884079912 ~2018
14079062489928158124979912 ~2018
14079491341128158982682312 ~2018
1408024692592703...09772914 2024
14081300948328162601896712 ~2018
14082259922328164519844712 ~2018
14083972544328167945088712 ~2018
14085238679928170477359912 ~2018
14090169962328180339924712 ~2018
14090822873928181645747912 ~2018
14091152243928182304487912 ~2018
14092631767128185263534312 ~2018
14093687515128187375030312 ~2018
14095157173128190314346312 ~2018
14097063721128194127442312 ~2018
Home
4.768.925 digits
e-mail
25-05-04