Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
14098767061128197534122312 ~2018
14099320831128198641662312 ~2018
14101728437928203456875912 ~2018
14101933973928203867947912 ~2018
14102230292328204460584712 ~2018
14102766073128205532146312 ~2018
14103913319928207826639912 ~2018
14104753537128209507074312 ~2018
14105103836328210207672712 ~2018
14105132948328210265896712 ~2018
14106294302328212588604712 ~2018
14106451741128212903482312 ~2018
14107559411928215118823912 ~2018
14107713283128215426566312 ~2018
14108167219128216334438312 ~2018
14109566755128219133510312 ~2018
14109588272328219176544712 ~2018
14111468519928222937039912 ~2018
14111752727928223505455912 ~2018
14111811133128223622266312 ~2018
14112549437928225098875912 ~2018
14112672569928225345139912 ~2018
14113532351928227064703912 ~2018
14114026817928228053635912 ~2018
14114708813928229417627912 ~2018
Exponent Prime Factor Dig. Year
14115316868328230633736712 ~2018
14117828863128235657726312 ~2018
14118455072328236910144712 ~2018
14118535139928237070279912 ~2018
14120330315928240660631912 ~2018
14120489569128240979138312 ~2018
14120505685128241011370312 ~2018
14120913683928241827367912 ~2018
14122067981928244135963912 ~2018
14122237235928244474471912 ~2018
14122729841928245459683912 ~2018
14124847693128249695386312 ~2018
14124874327128249748654312 ~2018
14125544576328251089152712 ~2018
14125732345128251464690312 ~2018
14126049110328252098220712 ~2018
14126184533928252369067912 ~2018
14127167405928254334811912 ~2018
14127317975928254635951912 ~2018
14129061841128258123682312 ~2018
14130104900328260209800712 ~2018
14131583095128263166190312 ~2018
14132657651928265315303912 ~2018
14132889530328265779060712 ~2018
14134344133128268688266312 ~2018
Exponent Prime Factor Dig. Year
14134486849128268973698312 ~2018
14134764301128269528602312 ~2018
14135065352328270130704712 ~2018
14135164069128270328138312 ~2018
14135562601128271125202312 ~2018
14136570827928273141655912 ~2018
14136795482328273590964712 ~2018
14137391432328274782864712 ~2018
14138671724328277343448712 ~2018
14140604504328281209008712 ~2018
14141615311128283230622312 ~2018
14142279283128284558566312 ~2018
14144131493928288262987912 ~2018
14146746203928293492407912 ~2018
14147904139128295808278312 ~2018
14148010118328296020236712 ~2018
14148051521928296103043912 ~2018
14148731563128297463126312 ~2018
14149323926328298647852712 ~2018
14149599617928299199235912 ~2018
14151043469928302086939912 ~2018
14152755707928305511415912 ~2018
14153526644328307053288712 ~2018
14154262813128308525626312 ~2018
14155356140328310712280712 ~2018
Exponent Prime Factor Dig. Year
14155510484328311020968712 ~2018
14157224947128314449894312 ~2018
1416192395573937...59684714 2023
14162920499928325840999912 ~2018
14163327721128326655442312 ~2018
14163913373928327826747912 ~2018
1416435680513130...39271115 2023
14164368668328328737336712 ~2018
14164518451128329036902312 ~2018
14165060945928330121891912 ~2018
14165511692328331023384712 ~2018
14166488771928332977543912 ~2018
14167560443928335120887912 ~2018
14168700853128337401706312 ~2018
14168754265128337508530312 ~2018
14169240488328338480976712 ~2018
14170499012328340998024712 ~2018
14170571339928341142679912 ~2018
14171036695128342073390312 ~2018
14174430755928348861511912 ~2018
14174680699128349361398312 ~2018
14175129535128350259070312 ~2018
14177797328328355594656712 ~2018
14180247812328360495624712 ~2018
14180531006328361062012712 ~2018
Home
4.768.925 digits
e-mail
25-05-04