Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
26679916367953359832735912 ~2020
26679955783153359911566312 ~2020
26683734890353367469780712 ~2020
26683960061953367920123912 ~2020
26687345095153374690190312 ~2020
26689434401953378868803912 ~2020
26689461253153378922506312 ~2020
26691855905953383711811912 ~2020
2669328139135338...78260114 2023
2669339419191238...05041715 2023
26694251831953388503663912 ~2020
26696499308353392998616712 ~2020
26698165232353396330464712 ~2020
2670000151012937...66111114 2024
26700535301953401070603912 ~2020
26701780811953403561623912 ~2020
26703218741953406437483912 ~2020
26703300001153406600002312 ~2020
26704329013153408658026312 ~2020
26705089975153410179950312 ~2020
26707902907153415805814312 ~2020
26708897909953417795819912 ~2020
26709826400353419652800712 ~2020
2671076398673894...92608715 2025
26711921395153423842790312 ~2020
Exponent Prime Factor Dig. Year
2671304661774701...04715314 2024
26716709773153433419546312 ~2020
26724382436353448764872712 ~2020
2673341397531363...27403115 2025
26735210861953470421723912 ~2020
26738084065153476168130312 ~2020
26741593721953483187443912 ~2020
26741609377153483218754312 ~2020
26742604081153485208162312 ~2020
26743778327953487556655912 ~2020
2674402660072139...28056114 2024
26745592556353491185112712 ~2020
26747559233953495118467912 ~2020
26747744738353495489476712 ~2020
26750865203953501730407912 ~2020
26751715805953503431611912 ~2020
26752163030353504326060712 ~2020
26754077719153508155438312 ~2020
26758323932353516647864712 ~2020
26761194419953522388839912 ~2020
26764754804353529509608712 ~2020
26766292811953532585623912 ~2020
26768274878353536549756712 ~2020
26770397741953540795483912 ~2020
26774645972353549291944712 ~2020
Exponent Prime Factor Dig. Year
26776091282353552182564712 ~2020
26776237447153552474894312 ~2020
2677682966031499...60976914 2024
26777451893953554903787912 ~2020
2677810508511499...84765714 2024
26779404647953558809295912 ~2020
2678125971613802...79686314 2025
26783025737953566051475912 ~2020
26783711407153567422814312 ~2020
26787335083153574670166312 ~2020
26788293419953576586839912 ~2020
26788390313953576780627912 ~2020
26792129263153584258526312 ~2020
26792499872353584999744712 ~2020
26794968841153589937682312 ~2020
26797063441153594126882312 ~2020
26803866095953607732191912 ~2020
26809309457953618618915912 ~2020
2681450367231984...71750314 2024
26815915094353631830188712 ~2020
26817816461953635632923912 ~2020
26818370999953636741999912 ~2020
26819177323153638354646312 ~2020
26819745074353639490148712 ~2020
26825126977153650253954312 ~2020
Exponent Prime Factor Dig. Year
26826984793153653969586312 ~2020
26827137776353654275552712 ~2020
2682716761071770...62306314 2024
26827700378353655400756712 ~2020
26828600005153657200010312 ~2020
26830457725153660915450312 ~2020
26838443731153676887462312 ~2020
26839714369153679428738312 ~2020
26840071285153680142570312 ~2020
26841186197953682372395912 ~2020
26842639195153685278390312 ~2020
26843065123153686130246312 ~2020
2684561319593275...09899914 2024
26850252149953700504299912 ~2020
26850406874353700813748712 ~2020
26852539016353705078032712 ~2020
26853476957953706953915912 ~2020
26854204322353708408644712 ~2020
26855108609953710217219912 ~2020
26855111245153710222490312 ~2020
26855205509953710411019912 ~2020
26855670829153711341658312 ~2020
26855955755953711911511912 ~2020
26856901457953713802915912 ~2020
26857541633953715083267912 ~2020
Home
4.679.597 digits
e-mail
25-03-23