Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13886207738327772415476712 ~2018
13886439169127772878338312 ~2018
13887777497927775554995912 ~2018
13888220261927776440523912 ~2018
13889453336327778906672712 ~2018
1388951377216639...83063914 2023
1389159990678251...44579914 2023
13893659401127787318802312 ~2018
13893684449927787368899912 ~2018
13893725893127787451786312 ~2018
1389450099499225...60613714 2025
13894869824327789739648712 ~2018
13895988179927791976359912 ~2018
13897412485127794824970312 ~2018
13898045531927796091063912 ~2018
13899212353127798424706312 ~2018
13899771308327799542616712 ~2018
13901244161927802488323912 ~2018
13902353129927804706259912 ~2018
13903363892327806727784712 ~2018
13903503800327807007600712 ~2018
13903592915927807185831912 ~2018
13904219105927808438211912 ~2018
13907592134327815184268712 ~2018
13908919826327817839652712 ~2018
Exponent Prime Factor Dig. Year
13911331298327822662596712 ~2018
13911774835127823549670312 ~2018
13912649581127825299162312 ~2018
13913739029927827478059912 ~2018
13917651197927835302395912 ~2018
13918089107927836178215912 ~2018
13919062507127838125014312 ~2018
13922116337927844232675912 ~2018
13922421763127844843526312 ~2018
13925149805927850299611912 ~2018
1392567010937686...00333714 2023
13926241583927852483167912 ~2018
13927447151927854894303912 ~2018
13927834513127855669026312 ~2018
13928735507927857471015912 ~2018
13928784971927857569943912 ~2018
13929061943927858123887912 ~2018
1392945561613315...36631914 2024
13929837809927859675619912 ~2018
13929852761927859705523912 ~2018
13932071318327864142636712 ~2018
13932086377127864172754312 ~2018
13933624349927867248699912 ~2018
13933667744327867335488712 ~2018
1393433565073149...57058314 2024
Exponent Prime Factor Dig. Year
13936274521127872549042312 ~2018
13938548555927877097111912 ~2018
13939066729127878133458312 ~2018
13940181721127880363442312 ~2018
13940263763927880527527912 ~2018
13940358803927880717607912 ~2018
13940556290327881112580712 ~2018
13941264989927882529979912 ~2018
13943443177127886886354312 ~2018
13944305585927888611171912 ~2018
13944607591127889215182312 ~2018
13945828331927891656663912 ~2018
13946181866327892363732712 ~2018
13947171113927894342227912 ~2018
13950206033927900412067912 ~2018
13950234967127900469934312 ~2018
13953879182327907758364712 ~2018
1395466143138037...84428914 2024
13954760039927909520079912 ~2018
13955221394327910442788712 ~2018
13957307309927914614619912 ~2018
13957860995927915721991912 ~2018
13958258725127916517450312 ~2018
13958679773927917359547912 ~2018
13959457718327918915436712 ~2018
Exponent Prime Factor Dig. Year
13960206002327920412004712 ~2018
13960747429127921494858312 ~2018
13961314261127922628522312 ~2018
13961417438327922834876712 ~2018
13963793120327927586240712 ~2018
13964370464327928740928712 ~2018
13964519387927929038775912 ~2018
13964624821127929249642312 ~2018
13965579167927931158335912 ~2018
13965613226327931226452712 ~2018
13965921560327931843120712 ~2018
13966076357927932152715912 ~2018
13967802953927935605907912 ~2018
13969690031927939380063912 ~2018
13971490595927942981191912 ~2018
13972537633127945075266312 ~2018
13973251778327946503556712 ~2018
13973277445127946554890312 ~2018
13974144727127948289454312 ~2018
13974568415927949136831912 ~2018
13976998568327953997136712 ~2018
13977324415127954648830312 ~2018
13977963301127955926602312 ~2018
13980118009127960236018312 ~2018
13981052978327962105956712 ~2018
Home
4.768.925 digits
e-mail
25-05-04