Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13437601673926875203347912 ~2018
13438090634326876181268712 ~2018
13438259765926876519531912 ~2018
13439025499126878050998312 ~2018
13439173825126878347650312 ~2018
13439214019126878428038312 ~2018
13439307068326878614136712 ~2018
13440523717126881047434312 ~2018
13441345319926882690639912 ~2018
13443442345126886884690312 ~2018
13443668012326887336024712 ~2018
1344757004831441...91777715 2023
13448680357126897360714312 ~2018
13450864631926901729263912 ~2018
13450959677926901919355912 ~2018
13451299993126902599986312 ~2018
13451918459926903836919912 ~2018
13452963212326905926424712 ~2018
13455004199926910008399912 ~2018
13455221957926910443915912 ~2018
13455285731926910571463912 ~2018
13456928306326913856612712 ~2018
13457643361126915286722312 ~2018
13459413236326918826472712 ~2018
13461352211926922704423912 ~2018
Exponent Prime Factor Dig. Year
13462597808326925195616712 ~2018
13462773020326925546040712 ~2018
13463297171926926594343912 ~2018
13465319348326930638696712 ~2018
13465859576326931719152712 ~2018
13466195329126932390658312 ~2018
13466637530326933275060712 ~2018
13467076184326934152368712 ~2018
13467141782326934283564712 ~2018
13467521258326935042516712 ~2018
13467577687126935155374312 ~2018
13468678207126937356414312 ~2018
1346970350931616...21116114 2024
13469968118326939936236712 ~2018
13470079550326940159100712 ~2018
13475837467126951674934312 ~2018
1347831761694286...02174314 2023
13480437344326960874688712 ~2018
13480464629926960929259912 ~2018
13480938983926961877967912 ~2018
13481476687126962953374312 ~2018
13482557447926965114895912 ~2018
13482841579126965683158312 ~2018
13483272692326966545384712 ~2018
13484025337126968050674312 ~2018
Exponent Prime Factor Dig. Year
13485091148326970182296712 ~2018
13485482051926970964103912 ~2018
13488182089126976364178312 ~2018
1348855500433156...71006314 2024
13489329823126978659646312 ~2018
13489403423926978806847912 ~2018
13490599574326981199148712 ~2018
13491022153126982044306312 ~2018
13493661341926987322683912 ~2018
13494545413126989090826312 ~2018
13496252945926992505891912 ~2018
1349690140799312...71451114 2025
13497364352326994728704712 ~2018
13499577127126999154254312 ~2018
1350041332794779...18076714 2023
13502376523127004753046312 ~2018
13503615655127007231310312 ~2018
13503893533127007787066312 ~2018
13503992006327007984012712 ~2018
13505051329127010102658312 ~2018
13506167060327012334120712 ~2018
13506190523927012381047912 ~2018
13506326984327012653968712 ~2018
13507774172327015548344712 ~2018
13510592420327021184840712 ~2018
Exponent Prime Factor Dig. Year
13513258442327026516884712 ~2018
13513703195927027406391912 ~2018
13514717299127029434598312 ~2018
13515536347127031072694312 ~2018
13515790007927031580015912 ~2018
13515910700327031821400712 ~2018
13516201223927032402447912 ~2018
13516827656327033655312712 ~2018
13519257065927038514131912 ~2018
13519756139927039512279912 ~2018
13519966811927039933623912 ~2018
13519994881127039989762312 ~2018
13520242472327040484944712 ~2018
1352049929395543...10499114 2023
13522375508327044751016712 ~2018
13523203289927046406579912 ~2018
13523269033127046538066312 ~2018
13524416963927048833927912 ~2018
13524605995127049211990312 ~2018
13524922447127049844894312 ~2018
13525195364327050390728712 ~2018
13527253009127054506018312 ~2018
13527445111127054890222312 ~2018
13527576476327055152952712 ~2018
13527713465927055426931912 ~2018
Home
4.768.925 digits
e-mail
25-05-04