Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
25394832985150789665970312 ~2020
2539536026411980...00599914 2024
25395779801950791559603912 ~2020
25397461747150794923494312 ~2020
2539797349035485...73904914 2024
25398237505150796475010312 ~2020
25403022373150806044746312 ~2020
25408301449150816602898312 ~2020
25409302309150818604618312 ~2020
25412690465950825380931912 ~2020
25413063455950826126911912 ~2020
25414020950350828041900712 ~2020
25415655779950831311559912 ~2020
25417218422350834436844712 ~2020
25420241959150840483918312 ~2020
25426090171150852180342312 ~2020
25426626323950853252647912 ~2020
25427349965950854699931912 ~2020
25428882938350857765876712 ~2020
2543267491915544...32363914 2024
25432735742350865471484712 ~2020
25432929733150865859466312 ~2020
25434009308350868018616712 ~2020
25434472799950868945599912 ~2020
25434797432350869594864712 ~2020
Exponent Prime Factor Dig. Year
25437552080350875104160712 ~2020
25443249403150886498806312 ~2020
25446589796350893179592712 ~2020
25448574629950897149259912 ~2020
25450387502350900775004712 ~2020
25450950113950901900227912 ~2020
25451013223150902026446312 ~2020
25458025859950916051719912 ~2020
2546167990692393...11248714 2024
25462143638350924287276712 ~2020
25463570483950927140967912 ~2020
25468642160350937284320712 ~2020
25468889107150937778214312 ~2020
25470385118350940770236712 ~2020
25470397757950940795515912 ~2020
25470406339150940812678312 ~2020
25471363141150942726282312 ~2020
25474652917150949305834312 ~2020
25475332315150950664630312 ~2020
25476593953150953187906312 ~2020
25478204300350956408600712 ~2020
25482500551150965001102312 ~2020
25484501089150969002178312 ~2020
25487140388350974280776712 ~2020
25489235653150978471306312 ~2020
Exponent Prime Factor Dig. Year
25490242829950980485659912 ~2020
25492954700350985909400712 ~2020
2549297922673670...08644914 2024
25493244187150986488374312 ~2020
25493668981150987337962312 ~2020
25496043134350992086268712 ~2020
25496098111150992196222312 ~2020
2549752634512294...71059114 2025
25498539989950997079979912 ~2020
25500698252351001396504712 ~2020
25500997022351001994044712 ~2020
25501259351951002518703912 ~2020
25504983311951009966623912 ~2020
25506871490351013742980712 ~2020
25508049773951016099547912 ~2020
25508708570351017417140712 ~2020
25508791340351017582680712 ~2020
2551013841715561...74927914 2023
25510238065151020476130312 ~2020
25522099289951044198579912 ~2020
25523839133951047678267912 ~2020
25524412333151048824666312 ~2020
25524679327151049358654312 ~2020
25526525281151053050562312 ~2020
25528209377951056418755912 ~2020
Exponent Prime Factor Dig. Year
25531712288351063424576712 ~2020
25533525823151067051646312 ~2020
25538960063951077920127912 ~2020
25540109677151080219354312 ~2020
25540172389151080344778312 ~2020
25540712239151081424478312 ~2020
25540951771151081903542312 ~2020
25541215505951082431011912 ~2020
25544785855151089571710312 ~2020
2554855871932605...89368714 2024
25551199513151102399026312 ~2020
25553829338351107658676712 ~2020
25554321059951108642119912 ~2020
25556933204351113866408712 ~2020
25557151070351114302140712 ~2020
25558762345151117524690312 ~2020
25559036203151118072406312 ~2020
25562198683151124397366312 ~2020
2556375833891590...86795915 2023
25570275488351140550976712 ~2020
25571379353951142758707912 ~2020
25571825965151143651930312 ~2020
25572283364351144566728712 ~2020
25572350099951144700199912 ~2020
25574362477151148724954312 ~2020
Home
4.679.597 digits
e-mail
25-03-23