Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
14445186422328890372844712 ~2018
14446211329128892422658312 ~2018
14447486347128894972694312 ~2018
14448125437128896250874312 ~2018
14448409897128896819794312 ~2018
14448422144328896844288712 ~2018
1444884203473120...79495314 2024
14449330703928898661407912 ~2018
14451611965128903223930312 ~2018
1445461168314162...64732914 2024
14455419145128910838290312 ~2018
14455795865928911591731912 ~2018
1445685490332515...53174314 2024
14457643133928915286267912 ~2018
1445768052711763...24306314 2024
14458670261928917340523912 ~2018
14459543783928919087567912 ~2018
14461177513128922355026312 ~2018
14462319421128924638842312 ~2018
14462465162328924930324712 ~2018
14462829031128925658062312 ~2018
14466221321928932442643912 ~2018
14466977432328933954864712 ~2018
1446741622576597...98919314 2023
14469506837928939013675912 ~2018
Exponent Prime Factor Dig. Year
14469572498328939144996712 ~2018
14469643550328939287100712 ~2018
14469773219928939546439912 ~2018
14471039726328942079452712 ~2018
14471754703128943509406312 ~2018
14471776061928943552123912 ~2018
14473551053928947102107912 ~2018
14473974871128947949742312 ~2018
14475935534328951871068712 ~2018
14476517833128953035666312 ~2018
14478753482328957506964712 ~2018
14480168924328960337848712 ~2018
14480578637928961157275912 ~2018
14480773985928961547971912 ~2018
14480833622328961667244712 ~2018
14482082893128964165786312 ~2018
1448415640339038...95659314 2023
14484657557928969315115912 ~2018
14486062549128972125098312 ~2018
14486698303128973396606312 ~2018
14486799674328973599348712 ~2018
1448888823174259...40119914 2023
14489215736328978431472712 ~2018
14491450361928982900723912 ~2018
14492548939128985097878312 ~2018
Exponent Prime Factor Dig. Year
14495690270328991380540712 ~2018
14495735462328991470924712 ~2018
14497280729928994561459912 ~2018
14498404897128996809794312 ~2018
14498683451928997366903912 ~2018
14499240332328998480664712 ~2018
14501671235929003342471912 ~2018
14502884725129005769450312 ~2018
1450368816311624...74267314 2025
14505539369929011078739912 ~2018
14506104938329012209876712 ~2018
14506171001929012342003912 ~2018
14506591385929013182771912 ~2018
1450803264015647...48532716 2025
14509313561929018627123912 ~2018
14509402784329018805568712 ~2018
14509730207929019460415912 ~2018
14510168029129020336058312 ~2018
14511239119129022478238312 ~2018
1451434419833738...54820915 2024
14514647587129029295174312 ~2018
14514714749929029429499912 ~2018
14516019548329032039096712 ~2018
14516705240329033410480712 ~2018
14517264595129034529190312 ~2018
Exponent Prime Factor Dig. Year
14517621635929035243271912 ~2018
14520368504329040737008712 ~2018
14520974150329041948300712 ~2018
14521064210329042128420712 ~2018
14525323676329050647352712 ~2018
14526302138329052604276712 ~2018
14526396989929052793979912 ~2018
14529389984329058779968712 ~2018
14531033665129062067330312 ~2018
1453171491114301...13685714 2023
14534810239129069620478312 ~2018
14534923067929069846135912 ~2018
14535353875129070707750312 ~2018
14535600001129071200002312 ~2018
14537095385929074190771912 ~2018
14537167273129074334546312 ~2018
14537977394329075954788712 ~2018
14537988577129075977154312 ~2018
1453963178174177...15367916 2023
14540078792329080157584712 ~2018
14540210546329080421092712 ~2018
14540868649129081737298312 ~2018
14541066122329082132244712 ~2018
14541637699129083275398312 ~2018
14541810188329083620376712 ~2018
Home
4.768.925 digits
e-mail
25-05-04