Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10760692381121521384762312 ~2017
10761143063921522286127912 ~2017
10761637271921523274543912 ~2017
10762349778164574098668712 ~2018
10762606592321525213184712 ~2017
10763043875921526087751912 ~2017
10763073245921526146491912 ~2017
10765743599921531487199912 ~2017
10766080580321532161160712 ~2017
10766539169921533078339912 ~2017
10767243218321534486436712 ~2017
10768490537921536981075912 ~2017
10768548092321537096184712 ~2017
1076863080113962...34804914 2023
10768714310321537428620712 ~2017
10768951604321537903208712 ~2017
10768993361921537986723912 ~2017
10769019085121538038170312 ~2017
10769463122321538926244712 ~2017
10771038853121542077706312 ~2017
10771195556321542391112712 ~2017
10772508212321545016424712 ~2017
10772656895921545313791912 ~2017
10773308251121546616502312 ~2017
10773909394164643456364712 ~2018
Exponent Prime Factor Dig. Year
10774654345121549308690312 ~2017
10775771598164654629588712 ~2018
10776219607121552439214312 ~2017
10776416177921552832355912 ~2017
10776499267764658995606312 ~2018
10776667259921553334519912 ~2017
10776849668321553699336712 ~2017
10777174489121554348978312 ~2017
10777781792321555563584712 ~2017
10777997647121555995294312 ~2017
10778278951121556557902312 ~2017
10779421208321558842416712 ~2017
10780108291364680649747912 ~2018
10780152865121560305730312 ~2017
10780552592321561105184712 ~2017
10780577552321561155104712 ~2017
10780594505921561189011912 ~2017
10780636327121561272654312 ~2017
10780937917764685627506312 ~2018
10781401712321562803424712 ~2017
10783000415364698002491912 ~2018
10784234257121568468514312 ~2017
1078466820893451...26848114 2024
10785517279121571034558312 ~2017
10786180963364717085779912 ~2018
Exponent Prime Factor Dig. Year
10786345418321572690836712 ~2017
10787066521121574133042312 ~2017
10787070679121574141358312 ~2017
10787078737121574157474312 ~2017
10787754535121575509070312 ~2017
10787907229121575814458312 ~2017
10788906805121577813610312 ~2017
10788933505121577867010312 ~2017
10789566169121579132338312 ~2017
10789894445921579788891912 ~2017
10789983563921579967127912 ~2017
10790115349764740692098312 ~2018
10791001549121582003098312 ~2017
10792112000321584224000712 ~2017
10792637875121585275750312 ~2017
10793014172321586028344712 ~2017
10793970769121587941538312 ~2017
10794620678321589241356712 ~2017
10794736147121589472294312 ~2017
10795634054321591268108712 ~2017
10796361010164778166060712 ~2018
1079641542473562...90151114 2023
10797582293921595164587912 ~2017
10799180967764795085806312 ~2018
10799183029121598366058312 ~2017
Exponent Prime Factor Dig. Year
10800122162321600244324712 ~2017
10800310591121600621182312 ~2017
10800584803121601169606312 ~2017
10801498096164808988576712 ~2018
10802284862321604569724712 ~2017
10802397109121604794218312 ~2017
1080253633872482...06332715 2023
10803014420321606028840712 ~2017
10803084056321606168112712 ~2017
10803288643121606577286312 ~2017
10803910080164823460480712 ~2018
10804197833921608395667912 ~2017
10804288994321608577988712 ~2017
10804796395364828778371912 ~2018
10806069824321612139648712 ~2017
10806819463121613638926312 ~2017
10807031828321614063656712 ~2017
10807177662164843065972712 ~2018
10808467555121616935110312 ~2017
10808572127921617144255912 ~2017
10809298843121618597686312 ~2017
10811268367121622536734312 ~2017
10811614544321623229088712 ~2017
10811924012321623848024712 ~2017
10811952587921623905175912 ~2017
Home
4.768.925 digits
e-mail
25-05-04