Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11520522661123041045322312 ~2017
11521615735123043231470312 ~2017
11523440612323046881224712 ~2017
11525509903123051019806312 ~2017
11526484931923052969863912 ~2017
11526793715923053587431912 ~2017
11527000634323054001268712 ~2017
11527210783123054421566312 ~2017
11527325069923054650139912 ~2017
11528360557369170163343912 ~2019
11528406779923056813559912 ~2017
11530937039923061874079912 ~2017
11531719350169190316100712 ~2019
11531778716323063557432712 ~2017
11532731717923065463435912 ~2017
11532994847923065989695912 ~2017
11533330327123066660654312 ~2017
11533687729123067375458312 ~2017
11535315044323070630088712 ~2017
11535658099369213948595912 ~2019
11536504059769219024358312 ~2019
11537897561923075795123912 ~2017
11539347432169236084592712 ~2019
11539368617923078737235912 ~2017
11539917686323079835372712 ~2017
Exponent Prime Factor Dig. Year
11540755145923081510291912 ~2017
1154126246894778...62124714 2023
11541278345923082556691912 ~2017
11541317831923082635663912 ~2017
11541769301923083538603912 ~2017
11543439391123086878782312 ~2017
11543486684323086973368712 ~2017
11543641981123087283962312 ~2017
11544004225123088008450312 ~2017
11544102941923088205883912 ~2017
11545505945923091011891912 ~2017
11546414594323092829188712 ~2017
11546461523923092923047912 ~2017
11546519419123093038838312 ~2017
11547321242323094642484712 ~2017
11547549577123095099154312 ~2017
1154786453511963...70967114 2024
11548492837123096985674312 ~2017
11548939063769293634382312 ~2019
11549553773923099107547912 ~2017
11549677568323099355136712 ~2017
11549848000169299088000712 ~2019
11550244358323100488716712 ~2017
11551348310323102696620712 ~2017
11552660251123105320502312 ~2017
Exponent Prime Factor Dig. Year
11553119171923106238343912 ~2017
11553753816169322522896712 ~2019
11553996323923107992647912 ~2017
11554270242169325621452712 ~2019
11554492715923108985431912 ~2017
11554898706169329392236712 ~2019
11555021501923110043003912 ~2017
11555048981923110097963912 ~2017
11555389643923110779287912 ~2017
1155753047512427...99771114 2024
11557559329123115118658312 ~2017
11558933345923117866691912 ~2017
11562423241123124846482312 ~2017
11563095170323126190340712 ~2017
11563204859369379229155912 ~2019
11563460395123126920790312 ~2017
11564012081923128024163912 ~2017
11564142658169384855948712 ~2019
11564883074323129766148712 ~2017
11564886350323129772700712 ~2017
11565022117123130044234312 ~2017
11566236899923132473799912 ~2017
11566582069123133164138312 ~2017
11568324371923136648743912 ~2017
11569290752323138581504712 ~2017
Exponent Prime Factor Dig. Year
11569520339923139040679912 ~2017
11569929655123139859310312 ~2017
11569953677923139907355912 ~2017
11570405870323140811740712 ~2017
11570665625923141331251912 ~2017
11570864131769425184790312 ~2019
11571388664323142777328712 ~2017
11571652697923143305395912 ~2017
11571761179123143522358312 ~2017
11571775352323143550704712 ~2017
11573095425769438572554312 ~2019
11573153600323146307200712 ~2017
11573242961923146485923912 ~2017
11573431681123146863362312 ~2017
11573812310323147624620712 ~2017
11574365519369446193115912 ~2019
11574983041123149966082312 ~2017
11576019203923152038407912 ~2017
11576900709769461404258312 ~2019
11577613946323155227892712 ~2017
11577872947123155745894312 ~2017
11579174771923158349543912 ~2017
11579478647923158957295912 ~2017
11579911301923159822603912 ~2017
11580495866323160991732712 ~2017
Home
4.679.597 digits
e-mail
25-03-23