Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10812394577364874367463912 ~2018
10812617893121625235786312 ~2017
10812758426321625516852712 ~2017
10813622072321627244144712 ~2017
10814685517121629371034312 ~2017
10815969221921631938443912 ~2017
10817063359121634126718312 ~2017
10817457380321634914760712 ~2017
10818616795121637233590312 ~2017
10819518578321639037156712 ~2017
10819541983121639083966312 ~2017
1082019869572661...79142314 2024
10820552516321641105032712 ~2017
10821155522321642311044712 ~2017
10821279932321642559864712 ~2017
10821842060321643684120712 ~2017
1082199087014309...29122316 2023
10822073029121644146058312 ~2017
10822478519921644957039912 ~2017
10822540123364935240739912 ~2018
10822749319121645498638312 ~2017
10823293406321646586812712 ~2017
10823537291921647074583912 ~2017
10823929586321647859172712 ~2017
10824386618321648773236712 ~2017
Exponent Prime Factor Dig. Year
10825501502321651003004712 ~2017
10826823332321653646664712 ~2017
10827594758321655189516712 ~2017
10828064039921656128079912 ~2017
10828090031921656180063912 ~2017
10828248884321656497768712 ~2017
1082935705313614...43247915 2025
10829512337921659024675912 ~2017
10830248899364981493395912 ~2018
10831935950321663871900712 ~2017
10832132449121664264898312 ~2017
10832775845921665551691912 ~2017
10833003766164998022596712 ~2018
10833744461921667488923912 ~2017
10834300987121668601974312 ~2017
10834375727921668751455912 ~2017
10834787857121669575714312 ~2017
10835608268321671216536712 ~2017
10836569144321673138288712 ~2017
10838798357921677596715912 ~2017
10838904128321677808256712 ~2017
10840172723365041036339912 ~2018
10840278653921680557307912 ~2017
10840991408321681982816712 ~2017
10841217656321682435312712 ~2017
Exponent Prime Factor Dig. Year
10841308103921682616207912 ~2017
10842717787121685435574312 ~2017
10843157969921686315939912 ~2017
10843553051365061318307912 ~2018
10843701219765062207318312 ~2018
10843934088165063604528712 ~2018
10844980741365069884447912 ~2018
10845547280321691094560712 ~2017
10845721739921691443479912 ~2017
10845922357121691844714312 ~2017
10846368230321692736460712 ~2017
10846640494165079842964712 ~2018
10846948421921693896843912 ~2017
10848571349921697142699912 ~2017
10849561423121699122846312 ~2017
10850676314321701352628712 ~2017
10851425450321702850900712 ~2017
10852003388321704006776712 ~2017
10852074367365112446203912 ~2018
10852177007921704354015912 ~2017
10852996013921705992027912 ~2017
10853018180321706036360712 ~2017
10853370353921706740707912 ~2017
10854004315121708008630312 ~2017
10854143582321708287164712 ~2017
Exponent Prime Factor Dig. Year
10855720418321711440836712 ~2017
10855760074165134560444712 ~2018
10856223211121712446422312 ~2017
10856427449921712854899912 ~2017
10856713016321713426032712 ~2017
10857019736321714039472712 ~2017
10857216056321714432112712 ~2017
10858504772321717009544712 ~2017
10858592575121717185150312 ~2017
10860076718321720153436712 ~2017
10860314191765161885150312 ~2018
10860775235921721550471912 ~2017
10860964309121721928618312 ~2017
10862049877121724099754312 ~2017
10862364253121724728506312 ~2017
10862833717765177002306312 ~2018
10863189524321726379048712 ~2017
10863429367121726858734312 ~2017
10864223815121728447630312 ~2017
10864698899365188193395912 ~2018
10865713706321731427412712 ~2017
10867459133921734918267912 ~2017
10868203538321736407076712 ~2017
10868352367121736704734312 ~2017
10868965334321737930668712 ~2017
Home
4.768.925 digits
e-mail
25-05-04