Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9119934293918239868587912 ~2017
9120231605918240463211912 ~2017
9120383690318240767380712 ~2017
9120444529118240889058312 ~2017
9122244671354733468027912 ~2018
9122280854318244561708712 ~2017
9122431859918244863719912 ~2017
9123098147354738588883912 ~2018
9123159977918246319955912 ~2017
9123383527118246767054312 ~2017
9124195861118248391722312 ~2017
9124558127918249116255912 ~2017
9125799775754754798654312 ~2018
912746396711533...46472914 2024
9128271157118256542314312 ~2017
9128300081354769800487912 ~2018
9128828312318257656624712 ~2017
9129467495918258934991912 ~2017
9131645657918263291315912 ~2017
913166574493287...68164114 2024
9133219232318266438464712 ~2017
913362463332612...45123914 2024
9134085625118268171250312 ~2017
9134315335118268630670312 ~2017
9134357320154806143920712 ~2018
Exponent Prime Factor Dig. Year
9135939020318271878040712 ~2017
9137057845118274115690312 ~2017
9137895035918275790071912 ~2017
9138169939354829019635912 ~2018
913860443592723...21898314 2024
9138705259118277410518312 ~2017
9138935612973111484903312 ~2018
9139523070154837138420712 ~2018
9139723472318279446944712 ~2017
9140515247354843091483912 ~2018
9140746364318281492728712 ~2017
9141339250173130714000912 ~2018
9141387733754848326402312 ~2018
9141523996773132191973712 ~2018
9141943189118283886378312 ~2017
9142643276318285286552712 ~2017
9142924889918285849779912 ~2017
9143747129918287494259912 ~2017
9144876346773159010773712 ~2018
9145272625118290545250312 ~2017
9145279909354871679455912 ~2018
9145292075918290584151912 ~2017
9145688378318291376756712 ~2017
9145773709754874642258312 ~2018
9145844471918291688943912 ~2017
Exponent Prime Factor Dig. Year
9146012161118292024322312 ~2017
9146845807173174766456912 ~2018
9147121729118294243458312 ~2017
9147419606318294839212712 ~2017
9147505807118295011614312 ~2017
9147764918318295529836712 ~2017
9148207811918296415623912 ~2017
9148449919118296899838312 ~2017
9148845844773190766757712 ~2018
9149072675918298145351912 ~2017
9149339716154896038296712 ~2018
9150356696318300713392712 ~2017
9150700795118301401590312 ~2017
9151626499118303252998312 ~2017
9151653307118303306614312 ~2017
9151702265918303404531912 ~2017
9151743755918303487511912 ~2017
9152019647918304039295912 ~2017
9152375801918304751603912 ~2017
9154563500318309127000712 ~2017
9155230526973241844215312 ~2018
9155970752318311941504712 ~2017
9155985668318311971336712 ~2017
9156075092318312150184712 ~2017
9158350237118316700474312 ~2017
Exponent Prime Factor Dig. Year
9158421217118316842434312 ~2017
9158442139118316884278312 ~2017
9158803615173270428920912 ~2018
9159760051118319520102312 ~2017
9160361719118320723438312 ~2017
9160565855973284526847312 ~2018
916236789972345...82323314 2024
9162461357918324922715912 ~2017
9162497233118324994466312 ~2017
9163352176173306817408912 ~2018
9164472779918328945559912 ~2017
9165221953118330443906312 ~2017
9165781922318331563844712 ~2017
9166885687173335085496912 ~2018
9167283506318334567012712 ~2017
9167310046155003860276712 ~2018
9167659512155005957072712 ~2018
9168589946318337179892712 ~2017
9170872484318341744968712 ~2017
9170946164318341892328712 ~2017
9171160049973369280399312 ~2018
9171261895173370095160912 ~2018
9171403801118342807602312 ~2017
9171744659918343489319912 ~2017
9172692205118345384410312 ~2017
Home
4.724.182 digits
e-mail
25-04-13