Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7512882779915025765559912 ~2016
7513633595915027267191912 ~2016
7514181637115028363274312 ~2016
7514607992315029215984712 ~2016
7514810165915029620331912 ~2016
7515002977115030005954312 ~2016
7515272743115030545486312 ~2016
7515330515915030661031912 ~2016
7515419680760123357445712 ~2017
7516408201115032816402312 ~2016
7516621265915033242531912 ~2016
7517042483915034084967912 ~2016
7517175305345103051831912 ~2017
7517250929915034501859912 ~2016
7517462072315034924144712 ~2016
7518161102315036322204712 ~2016
7518487987760147903901712 ~2017
7518550160315037100320712 ~2016
7518801560315037603120712 ~2016
7519649959345117899755912 ~2017
7519996151915039992303912 ~2016
7520205793745121234762312 ~2017
7520236382315040472764712 ~2016
7520570671160164565368912 ~2017
7520847205115041694410312 ~2016
Exponent Prime Factor Dig. Year
7520919737915041839475912 ~2016
7521260358145127562148712 ~2017
7521488317115042976634312 ~2016
7521720098315043440196712 ~2016
7521785657915043571315912 ~2016
7523383021115046766042312 ~2016
7523499335960187994687312 ~2017
7523648341115047296682312 ~2016
7523670193115047340386312 ~2016
7523678225915047356451912 ~2016
7524076604315048153208712 ~2016
7524435572315048871144712 ~2016
7524710204315049420408712 ~2016
7525213231115050426462312 ~2016
7525218152315050436304712 ~2016
7525524721115051049442312 ~2016
7525658876315051317752712 ~2016
7525759460315051518920712 ~2016
7526015816315052031632712 ~2016
7526639146760213113173712 ~2017
7526686340315053372680712 ~2016
7527196772315054393544712 ~2016
7527219359915054438719912 ~2016
7527738536315055477072712 ~2016
7527822116315055644232712 ~2016
Exponent Prime Factor Dig. Year
7527996523115055993046312 ~2016
7527999410315055998820712 ~2016
7529046681745174280090312 ~2017
7529114159915058228319912 ~2016
7529669461115059338922312 ~2016
7529692819115059385638312 ~2016
7530437881345182627287912 ~2017
7530519675175305196751112 ~2018
7531070461115062140922312 ~2016
7531839229115063678458312 ~2016
7531861052960254888423312 ~2017
7531903225115063806450312 ~2016
753340060794158...35560914 2024
7533479278760267834229712 ~2017
7533680486315067360972712 ~2016
7533829583915067659167912 ~2016
7533954217115067908434312 ~2016
7534140125915068280251912 ~2016
7534201039760273608317712 ~2017
7534555376315069110752712 ~2016
7535273307745211639846312 ~2017
7536390133115072780266312 ~2016
7536866716375368667163112 ~2018
7536944023345221664139912 ~2017
7537001126315074002252712 ~2016
Exponent Prime Factor Dig. Year
7537462781915074925563912 ~2016
7538046785915076093571912 ~2016
7538414621960307316975312 ~2017
7538510285345231061711912 ~2017
7538523537745231141226312 ~2017
7538781932315077563864712 ~2016
7538987348315077974696712 ~2016
7540791979115081583958312 ~2016
7540891429115081782858312 ~2016
7540926349115081852698312 ~2016
7541232361115082464722312 ~2016
7541305918160330447344912 ~2017
7541515444760332123557712 ~2017
754229134577225...09180714 2023
7542986605115085973210312 ~2016
7544319765745265918594312 ~2017
7544523956315089047912712 ~2016
7545521672315091043344712 ~2016
7545801703115091603406312 ~2016
7545937579115091875158312 ~2016
7546638605345279831631912 ~2017
7546641222145279847332712 ~2017
7547261174315094522348712 ~2016
7547614280315095228560712 ~2016
7547874962315095749924712 ~2016
Home
4.768.925 digits
e-mail
25-05-04