Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
190965026513819300530311 ~2011
1909831417726737639847912 ~2013
190997656313819953126311 ~2011
190998544793819970895911 ~2011
190999509233819990184711 ~2011
1910005639945840135357712 ~2014
191007629633820152592711 ~2011
1910189603915281516831312 ~2013
191025110033820502200711 ~2011
1910302842130564845473712 ~2014
1910403555119104035551112 ~2013
1910408820734387358772712 ~2014
1910485904915283887239312 ~2013
1910488441311462930647912 ~2012
191049686393820993727911 ~2011
1910512823915284102591312 ~2013
191055762113821115242311 ~2011
191063005193821260103911 ~2011
191086345433821726908711 ~2011
191093150513821863010311 ~2011
191099373233821987464711 ~2011
191101920113822038402311 ~2011
1911081618130577305889712 ~2014
191120205472022...73872714 2023
191127750233822555004711 ~2011
Exponent Prime Factor Dig. Year
1911437346130582997537712 ~2014
191151650393823033007911 ~2011
1911545807311469274843912 ~2012
1911546241715292369933712 ~2013
191156550593823131011911 ~2011
1911605286111469631716712 ~2012
1911712841326763979778312 ~2013
191178791033823575820711 ~2011
1911793747726765112467912 ~2013
1911849633711471097802312 ~2012
1911901708111471410248712 ~2012
191193707033823874140711 ~2011
191202122033824042440711 ~2011
1912091578715296732629712 ~2013
1912092961311472557767912 ~2012
1912094521311472567127912 ~2012
191221156433824423128711 ~2011
191225154113824503082311 ~2011
191226446033824528920711 ~2011
1912333129115298665032912 ~2013
191234777393824695547911 ~2011
191250476033825009520711 ~2011
1912672319915301378559312 ~2013
191285424833825708496711 ~2011
191287746833825754936711 ~2011
Exponent Prime Factor Dig. Year
1912911046330606576740912 ~2014
191293689593825873791911 ~2011
1912965715311477794291912 ~2012
1912994291311477965747912 ~2012
191302228433826044568711 ~2011
191311243193826224863911 ~2011
191328004193826560083911 ~2011
191329760393826595207911 ~2011
191339263193826785263911 ~2011
191349263393826985267911 ~2011
1913613724330617819588912 ~2014
1913654425745927706216912 ~2014
1913661291711481967750312 ~2012
191370951113827419022311 ~2011
191378312033827566240711 ~2011
191379430913827588618311 ~2011
1913889334115311114672912 ~2013
191391007313827820146311 ~2011
1913950039919139500399112 ~2013
191399615393827992307911 ~2011
191400039593828000791911 ~2011
191403692393828073847911 ~2011
191411107313828222146311 ~2011
1914141673311484850039912 ~2013
1914229992111485379952712 ~2013
Exponent Prime Factor Dig. Year
1914352140776574085628112 ~2015
1914487833119144878331112 ~2013
191449565993828991319911 ~2011
1914574453115316595624912 ~2013
191461839113829236782311 ~2011
1914740733711488444402312 ~2013
191474701313829494026311 ~2011
191487005633829740112711 ~2011
1914917231311489503387912 ~2013
1914942059357448261779112 ~2014
191500732793830014655911 ~2011
191507629793830152595911 ~2011
1915176265711491057594312 ~2013
191519871113830397422311 ~2011
191521556993830431139911 ~2011
1915217878365117407862312 ~2014
191526249713830524994311 ~2011
191545845233830916904711 ~2011
1915483636715323869093712 ~2013
191551004033831020080711 ~2011
1915532983342141725632712 ~2014
191557003793831140075911 ~2011
1915827502172801445079912 ~2014
1915835503311495013019912 ~2013
1915860361934485486514312 ~2014
Home
5.307.017 digits
e-mail
26-01-11