Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10399628519920799257039912 ~2017
10399840490320799680980712 ~2017
10399948753362399692519912 ~2018
10400186449362401118695912 ~2018
10400196029920800392059912 ~2017
10400476195762402857174312 ~2018
10400811893362404871359912 ~2018
10401809497762410856986312 ~2018
10402893566320805787132712 ~2017
10404122069362424732415912 ~2018
10404568427920809136855912 ~2017
10405141832320810283664712 ~2017
1040545608615723...47355114 2024
10405677787120811355574312 ~2017
10405727353120811454706312 ~2017
10406517701920813035403912 ~2017
10406923696162441542176712 ~2018
10407586247920815172495912 ~2017
10407671707120815343414312 ~2017
10408877323120817754646312 ~2017
10409161379920818322759912 ~2017
10409843960320819687920712 ~2017
10409861858320819723716712 ~2017
10410505027120821010054312 ~2017
10410710513920821421027912 ~2017
Exponent Prime Factor Dig. Year
10410930271120821860542312 ~2017
10411503061120823006122312 ~2017
10411600295362469601771912 ~2018
10412696582320825393164712 ~2017
10413188504320826377008712 ~2017
10413314119120826628238312 ~2017
1041347707693478...43684714 2023
10413920661762483523970312 ~2018
10414014595120828029190312 ~2017
10415233009762491398058312 ~2018
10416138408162496830448712 ~2018
10417375508320834751016712 ~2017
10417873657762507241946312 ~2018
10418083481920836166963912 ~2017
10418298619120836597238312 ~2017
10420727159920841454319912 ~2017
10422152617362532915703912 ~2018
10422199700320844399400712 ~2017
10423653239920847306479912 ~2017
10424382955362546297731912 ~2018
10424899565920849799131912 ~2017
10426350254320852700508712 ~2017
10427408636320854817272712 ~2017
10427738203120855476406312 ~2017
10428341267920856682535912 ~2017
Exponent Prime Factor Dig. Year
10428393656320856787312712 ~2017
10428995323120857990646312 ~2017
10429496228320858992456712 ~2017
10431487736320862975472712 ~2017
1043172099373004...46185714 2024
10432003430320864006860712 ~2017
10432471867120864943734312 ~2017
10432795214320865590428712 ~2017
10432931981920865863963912 ~2017
1043321839573484...44163914 2024
10433778758320867557516712 ~2017
10434995315920869990631912 ~2017
10435608328162613649968712 ~2018
1043639514592442...64140714 2024
10437842393920875684787912 ~2017
10438702913920877405827912 ~2017
10438763515120877527030312 ~2017
10439000025762634000154312 ~2018
10440590110162643540660712 ~2018
10442019143920884038287912 ~2017
10442248841920884497683912 ~2017
10443421051120886842102312 ~2017
10443767444320887534888712 ~2017
10444744981120889489962312 ~2017
10445369132320890738264712 ~2017
Exponent Prime Factor Dig. Year
10445669978320891339956712 ~2017
10445834981920891669963912 ~2017
10446054896320892109792712 ~2017
10446090902320892181804712 ~2017
10446228569920892457139912 ~2017
10446574003362679444019912 ~2018
10447418143120894836286312 ~2017
10448985421120897970842312 ~2017
10449279555762695677334312 ~2018
10449523019362697138115912 ~2018
10451191057120902382114312 ~2017
10451587229920903174459912 ~2017
10452752260162716513560712 ~2018
10454001341920908002683912 ~2017
10454249623120908499246312 ~2017
10456699370320913398740712 ~2017
10457247007120914494014312 ~2017
10457436910162744621460712 ~2018
10457761616320915523232712 ~2017
10458334369120916668738312 ~2017
10459565731120919131462312 ~2017
10459946078320919892156712 ~2017
10460303003920920606007912 ~2017
10460365853920920731707912 ~2017
10461338341120922676682312 ~2017
Home
4.768.925 digits
e-mail
25-05-04