Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17101721489934203442979912 ~2019
17101914025134203828050312 ~2019
17102444185134204888370312 ~2019
17103766529934207533059912 ~2019
17104773203934209546407912 ~2019
17105085740334210171480712 ~2019
17105118265134210236530312 ~2019
17105473753134210947506312 ~2019
17106903359934213806719912 ~2019
17107057238334214114476712 ~2019
17108438156334216876312712 ~2019
17108531771934217063543912 ~2019
17110125151134220250302312 ~2019
1711135012493388...24730314 2024
1711330696072546...57521715 2025
17114560159134229120318312 ~2019
17115287732334230575464712 ~2019
17116738412334233476824712 ~2019
17117403757134234807514312 ~2019
17117438603934234877207912 ~2019
17117955020334235910040712 ~2019
17118529172334237058344712 ~2019
17118587648334237175296712 ~2019
17119880681934239761363912 ~2019
17120422135134240844270312 ~2019
Exponent Prime Factor Dig. Year
17121207145134242414290312 ~2019
17121337969134242675938312 ~2019
17121487178334242974356712 ~2019
17121866567934243733135912 ~2019
17128750345134257500690312 ~2019
17128775840334257551680712 ~2019
17128831556334257663112712 ~2019
17129190307134258380614312 ~2019
17130084836334260169672712 ~2019
17130325625934260651251912 ~2019
17133363914334266727828712 ~2019
17133484193934266968387912 ~2019
17133489395934266978791912 ~2019
17133703285134267406570312 ~2019
17134711523934269423047912 ~2019
17134943960334269887920712 ~2019
17136198074334272396148712 ~2019
17136277549134272555098312 ~2019
17136779743134273559486312 ~2019
17137637789934275275579912 ~2019
17138007781134276015562312 ~2019
17138059142334276118284712 ~2019
17138641829934277283659912 ~2019
17139098642334278197284712 ~2019
17140165421934280330843912 ~2019
Exponent Prime Factor Dig. Year
17142548113134285096226312 ~2019
17144322869934288645739912 ~2019
17145839425134291678850312 ~2019
17145935411934291870823912 ~2019
17146649419134293298838312 ~2019
17147315879934294631759912 ~2019
1714778271592606...72816914 2024
17148454945134296909890312 ~2019
17148999029934297998059912 ~2019
1714900605171646...80963314 2024
17150206391934300412783912 ~2019
17151956473134303912946312 ~2019
17152057805934304115611912 ~2019
17152282873134304565746312 ~2019
17155309735134310619470312 ~2019
17155972418334311944836712 ~2019
17157115861134314231722312 ~2019
1715747338613808...91714314 2023
17157775100334315550200712 ~2019
17158123130334316246260712 ~2019
1716029289613260...50259114 2024
1716036213892711...17946314 2024
17163610028334327220056712 ~2019
17163742772334327485544712 ~2019
17164392937134328785874312 ~2019
Exponent Prime Factor Dig. Year
1716507803393330...38576714 2024
17166732188334333464376712 ~2019
1716745504272472...26148914 2024
17167904983134335809966312 ~2019
17167985348334335970696712 ~2019
17169404095134338808190312 ~2019
17170128566334340257132712 ~2019
17170322561934340645123912 ~2019
17170820807934341641615912 ~2019
17172177305934344354611912 ~2019
17172181052334344362104712 ~2019
17172667745934345335491912 ~2019
17176185655134352371310312 ~2019
17176513058334353026116712 ~2019
17178117349134356234698312 ~2019
17179581955134359163910312 ~2019
17180417264334360834528712 ~2019
17183860169934367720339912 ~2019
17184320660334368641320712 ~2019
17184675325134369350650312 ~2019
17184947306334369894612712 ~2019
17185362979134370725958312 ~2019
17186759012334373518024712 ~2019
17188291741134376583482312 ~2019
17188383818334376767636712 ~2019
Home
4.679.597 digits
e-mail
25-03-23