Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10461872813920923745627912 ~2017
10462388744320924777488712 ~2017
10463489581120926979162312 ~2017
10463531827362781190963912 ~2018
10467042943120934085886312 ~2017
10467237085120934474170312 ~2017
10467933077920935866155912 ~2017
10468854565362813127391912 ~2018
10469808005920939616011912 ~2017
1047042263113518...04049714 2024
10471170773920942341547912 ~2017
1047142817395466...06775914 2024
10472260286320944520572712 ~2017
10473364747120946729494312 ~2017
10473561832162841370992712 ~2018
10475499775120950999550312 ~2017
10476943844320953887688712 ~2017
10476998497120953996994312 ~2017
10477912301920955824603912 ~2017
10478220467920956440935912 ~2017
10478875505920957751011912 ~2017
10478931523120957863046312 ~2017
10479233643762875401862312 ~2018
10479616856320959233712712 ~2017
10479662366320959324732712 ~2017
Exponent Prime Factor Dig. Year
10480771587762884629526312 ~2018
10482518929120965037858312 ~2017
10482830381920965660763912 ~2017
10482992779362897956675912 ~2018
10483328411920966656823912 ~2017
10483977527920967955055912 ~2017
10484852377120969704754312 ~2017
10485541501120971083002312 ~2017
10486389492162918336952712 ~2018
10486400519920972801039912 ~2017
10486590413362919542479912 ~2018
10487163785920974327571912 ~2017
10488963157120977926314312 ~2017
10489316011120978632022312 ~2017
10489339673920978679347912 ~2017
10489692092320979384184712 ~2017
10490622421120981244842312 ~2017
10491403280320982806560712 ~2017
10493784449920987568899912 ~2017
10496345437120992690874312 ~2017
10496816852320993633704712 ~2017
10497270133120994540266312 ~2017
10497518354320995036708712 ~2017
10498074989920996149979912 ~2017
10498106963920996213927912 ~2017
Exponent Prime Factor Dig. Year
10498513229920997026459912 ~2017
10499317855120998635710312 ~2017
1049935036212183...75316914 2024
10499768204320999536408712 ~2017
10500312331121000624662312 ~2017
10500513905921001027811912 ~2017
10500985136321001970272712 ~2017
10501215422321002430844712 ~2017
10502242961921004485923912 ~2017
10502484938321004969876712 ~2017
10502838017921005676035912 ~2017
10503067603121006135206312 ~2017
10505135165921010270331912 ~2017
10505463452321010926904712 ~2017
10506225779921012451559912 ~2017
10507141277921014282555912 ~2017
10508553629921017107259912 ~2017
10508922716321017845432712 ~2017
10509794351363058766107912 ~2018
10510010738321020021476712 ~2017
10510049973763060299842312 ~2018
10510326320321020652640712 ~2017
10510447157921020894315912 ~2017
10511675185121023350370312 ~2017
10511732099363070392595912 ~2018
Exponent Prime Factor Dig. Year
10513983925121027967850312 ~2017
1051418831175852...42922315 2023
10514761261763088567570312 ~2018
10515751117121031502234312 ~2017
10516369097921032738195912 ~2017
10516846920163101081520712 ~2018
10517631020321035262040712 ~2017
10518756809921037513619912 ~2017
10519488794321038977588712 ~2017
10519832096321039664192712 ~2017
10519905415121039810830312 ~2017
10520560741121041121482312 ~2017
10520713797763124282786312 ~2018
1052119565339307...49091915 2024
10521538517921043077035912 ~2017
10521904957121043809914312 ~2017
10521932602163131595612712 ~2018
10522998971921045997943912 ~2017
10523343709121046687418312 ~2017
10523657467121047314934312 ~2017
10524218831921048437663912 ~2017
10524423751363146542507912 ~2018
10524736562321049473124712 ~2017
10524891338321049782676712 ~2017
10524936572321049873144712 ~2017
Home
4.768.925 digits
e-mail
25-05-04