Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16986380498333972760996712 ~2019
16987564085933975128171912 ~2019
16988811797933977623595912 ~2019
16989387188333978774376712 ~2019
16990176781133980353562312 ~2019
16990481233133980962466312 ~2019
1699094746613398...93220114 2024
16991128676333982257352712 ~2019
16991152670333982305340712 ~2019
16991332825133982665650312 ~2019
16991570257133983140514312 ~2019
16992829178333985658356712 ~2019
16995607111133991214222312 ~2019
16995765977933991531955912 ~2019
16996667269133993334538312 ~2019
16996833968333993667936712 ~2019
16997030099933994060199912 ~2019
16997156905133994313810312 ~2019
17000401979934000803959912 ~2019
17001461681934002923363912 ~2019
1700285153334998...50790314 2025
17004637229934009274459912 ~2019
17004832511934009665023912 ~2019
1700936712712891...11607114 2024
17010426341934020852683912 ~2019
Exponent Prime Factor Dig. Year
17010779701134021559402312 ~2019
17012947298334025894596712 ~2019
17014151467134028302934312 ~2019
17015578453134031156906312 ~2019
1701589802876534...43020914 2023
17018693897934037387795912 ~2019
17019597209934039194419912 ~2019
17020273604334040547208712 ~2019
17020932308334041864616712 ~2019
17022291913134044583826312 ~2019
17023485529134046971058312 ~2019
17023552285134047104570312 ~2019
17024260118334048520236712 ~2019
17025066704334050133408712 ~2019
17027264381934054528763912 ~2019
17028532115934057064231912 ~2019
17028810833934057621667912 ~2019
1702911832212857...44483915 2025
17030273947134060547894312 ~2019
17030475853134060951706312 ~2019
17030541821934061083643912 ~2019
17033340389934066680779912 ~2019
17034180290334068360580712 ~2019
17034461507934068923015912 ~2019
17035080578334070161156712 ~2019
Exponent Prime Factor Dig. Year
17036266073934072532147912 ~2019
17038936555134077873110312 ~2019
17040162637134080325274312 ~2019
17040748853934081497707912 ~2019
17041096628334082193256712 ~2019
17041236398334082472796712 ~2019
17043015545934086031091912 ~2019
17045670434334091340868712 ~2019
17048829647934097659295912 ~2019
17051319161934102638323912 ~2019
17054894666334109789332712 ~2019
17056825550334113651100712 ~2019
17059376963934118753927912 ~2019
17062001660334124003320712 ~2019
17063150329134126300658312 ~2019
17063767040334127534080712 ~2019
17064223670334128447340712 ~2019
17065467769134130935538312 ~2019
17066470088334132940176712 ~2019
17066710490334133420980712 ~2019
17067032573934134065147912 ~2019
17068451564334136903128712 ~2019
17072239759134144479518312 ~2019
17072991848334145983696712 ~2019
17073720617934147441235912 ~2019
Exponent Prime Factor Dig. Year
17074068101934148136203912 ~2019
1707711198913176...29972714 2024
17078173321134156346642312 ~2019
1707897658798095...02664714 2023
1707928321573552...08865714 2024
17079975935934159951871912 ~2019
17080160537934160321075912 ~2019
17080519004334161038008712 ~2019
17080633561134161267122312 ~2019
17083508015934167016031912 ~2019
17084538535134169077070312 ~2019
17084565620334169131240712 ~2019
17085218095134170436190312 ~2019
17087439355134174878710312 ~2019
17088883783134177767566312 ~2019
17090874955134181749910312 ~2019
17091122177934182244355912 ~2019
17091863881134183727762312 ~2019
17093567029134187134058312 ~2019
17096153453934192306907912 ~2019
17096293562334192587124712 ~2019
17097232699134194465398312 ~2019
17099676830334199353660712 ~2019
17100433855134200867710312 ~2019
17101187353134202374706312 ~2019
Home
4.679.597 digits
e-mail
25-03-23