Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10353285907120706571814312 ~2017
10353450437362120702623912 ~2018
10353550241920707100483912 ~2017
10353554074162121324444712 ~2018
10353956795920707913591912 ~2017
10354618579120709237158312 ~2017
10355642599120711285198312 ~2017
10356192253120712384506312 ~2017
10356888929920713777859912 ~2017
10357814737120715629474312 ~2017
10357863293920715726587912 ~2017
10358073157120716146314312 ~2017
10358325229120716650458312 ~2017
10358794295920717588591912 ~2017
10359115985362154695911912 ~2018
10359606161920719212323912 ~2017
10360878242320721756484712 ~2017
10361036012320722072024712 ~2017
10361443529920722887059912 ~2017
10362143732320724287464712 ~2017
10362520315120725040630312 ~2017
10362832376320725664752712 ~2017
10362999509920725999019912 ~2017
10364634625762187807754312 ~2018
10364899883920729799767912 ~2017
Exponent Prime Factor Dig. Year
10365246563920730493127912 ~2017
10365639702162193838212712 ~2018
10365734048320731468096712 ~2017
1036611196496364...46448714 2025
10366250899120732501798312 ~2017
10366650008320733300016712 ~2017
10366686301120733372602312 ~2017
10367164574320734329148712 ~2017
10367899277920735798555912 ~2017
10368338877762210033266312 ~2018
10369208795920738417591912 ~2017
10370434964320740869928712 ~2017
10370446121920740892243912 ~2017
10370678701120741357402312 ~2017
10370870159920741740319912 ~2017
10370927876320741855752712 ~2017
1037138485071072...35623915 2025
10371423443920742846887912 ~2017
10371577310320743154620712 ~2017
10371840824320743681648712 ~2017
10372381610320744763220712 ~2017
10372861393120745722786312 ~2017
10372969975120745939950312 ~2017
10372987897120745975794312 ~2017
10373212322320746424644712 ~2017
Exponent Prime Factor Dig. Year
10374143759920748287519912 ~2017
10374540557920749081115912 ~2017
10375121978320750243956712 ~2017
10376853751120753707502312 ~2017
10376994173362261965039912 ~2018
10377430073920754860147912 ~2017
10378579513120757159026312 ~2017
10379875735120759751470312 ~2017
10379906149120759812298312 ~2017
10381207988320762415976712 ~2017
10381419211362288515267912 ~2018
10381735897120763471794312 ~2017
10381781964162290691784712 ~2018
10382426738320764853476712 ~2017
10382566631920765133263912 ~2017
10382923100320765846200712 ~2017
10382998735120765997470312 ~2017
10383835231120767670462312 ~2017
10384288496320768576992712 ~2017
10385204803120770409606312 ~2017
10385300281120770600562312 ~2017
10385916073120771832146312 ~2017
1038679229811726...99442315 2023
10386972002320773944004712 ~2017
10387274383362323646299912 ~2018
Exponent Prime Factor Dig. Year
10387338152320774676304712 ~2017
10387523267920775046535912 ~2017
10388084153920776168307912 ~2017
10388231365120776462730312 ~2017
10388784133120777568266312 ~2017
10389009674320778019348712 ~2017
10389206681920778413363912 ~2017
10389550771362337304627912 ~2018
10390191991120780383982312 ~2017
10391333545362348001271912 ~2018
10392477818320784955636712 ~2017
10392710125120785420250312 ~2017
10393023923920786047847912 ~2017
10393342789120786685578312 ~2017
10393394954320786789908712 ~2017
10394129803120788259606312 ~2017
10394310266320788620532712 ~2017
10396040647762376243886312 ~2018
10396496128162378976768712 ~2018
10396797056320793594112712 ~2017
10397665951120795331902312 ~2017
10397774568162386647408712 ~2018
10398309961120796619922312 ~2017
10398797095120797594190312 ~2017
10399028768320798057536712 ~2017
Home
4.768.925 digits
e-mail
25-05-04