Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7406280547744437683286312 ~2017
7407482972314814965944712 ~2016
7407913297114815826594312 ~2016
7408515281914817030563912 ~2016
7408745816959269966535312 ~2017
7409651546314819303092712 ~2016
7409860678159278885424912 ~2017
7410139765114820279530312 ~2016
7410171973759281375789712 ~2017
7410337313914820674627912 ~2016
7410420428314820840856712 ~2016
7410539859744463239158312 ~2017
7410632221114821264442312 ~2016
7410945091114821890182312 ~2016
7411051076314822102152712 ~2016
7411718441914823436883912 ~2016
7411981291114823962582312 ~2016
7412302019914824604039912 ~2016
7412308511914824617023912 ~2016
7412424431914824848863912 ~2016
7412499779914824999559912 ~2016
7412527451914825054903912 ~2016
7413024445114826048890312 ~2016
7413627767914827255535912 ~2016
7413765662314827531324712 ~2016
Exponent Prime Factor Dig. Year
7413776438314827552876712 ~2016
7414090228144484541368712 ~2017
7414521757114829043514312 ~2016
7414759393114829518786312 ~2016
7416289253914832578507912 ~2016
7416555203914833110407912 ~2016
7416712867114833425734312 ~2016
7416784189759334273517712 ~2017
7418246233114836492466312 ~2016
7418343662314836687324712 ~2016
7418609041114837218082312 ~2016
7419343136314838686272712 ~2016
7419713497114839426994312 ~2016
7419775061914839550123912 ~2016
7420524697114841049394312 ~2016
7420613768314841227536712 ~2016
7420788859114841577718312 ~2016
7420954283344525725699912 ~2017
7421705580774217055807112 ~2018
7422180286759377442293712 ~2017
7422878005114845756010312 ~2016
7423655894314847311788712 ~2016
7423828772314847657544712 ~2016
7424419283914848838567912 ~2016
7425176294314850352588712 ~2016
Exponent Prime Factor Dig. Year
7425194399914850388799912 ~2016
7425953037744555718226312 ~2017
7426153309114852306618312 ~2016
7426166032759409328261712 ~2017
7426521761914853043523912 ~2016
7426673749114853347498312 ~2016
7426858507344561151043912 ~2017
7426947491959415579935312 ~2017
7427882148144567292888712 ~2017
7428167929114856335858312 ~2016
7428600431344571602587912 ~2017
7428779149974287791499112 ~2018
7428952967914857905935912 ~2016
7429149715114858299430312 ~2016
7429438849114858877698312 ~2016
7430666000314861332000712 ~2016
7432022867914864045735912 ~2016
7432402075344594412451912 ~2017
7432488091114864976182312 ~2016
7432738660374327386603112 ~2018
7432796413114865592826312 ~2016
7433615843914867231687912 ~2016
7433718694159469749552912 ~2017
7434089216314868178432712 ~2016
7434366917344606201503912 ~2017
Exponent Prime Factor Dig. Year
743471052773390...00631314 2024
7435046869114870093738312 ~2016
7435125617914870251235912 ~2016
7435149037114870298074312 ~2016
7435150481959481203855312 ~2017
7435207796314870415592712 ~2016
7435430917114870861834312 ~2016
7435797038314871594076712 ~2016
7435990283914871980567912 ~2016
7436847363744621084182312 ~2017
7437297968314874595936712 ~2016
7437315001114874630002312 ~2016
743742626891963...34989714 2023
7437799280314875598560712 ~2016
7438199485744629196914312 ~2017
7438329971914876659943912 ~2016
7438641764314877283528712 ~2016
7438805927914877611855912 ~2016
7439403763974394037639112 ~2018
7440353425114880706850312 ~2016
7440848213914881696427912 ~2016
7440916351114881832702312 ~2016
7441449733114882899466312 ~2016
7441546323744649277942312 ~2017
744227151613505...40831115 2023
Home
4.768.925 digits
e-mail
25-05-04