Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10298068376320596136752712 ~2017
10298112032320596224064712 ~2017
10298550740320597101480712 ~2017
10298571257920597142515912 ~2017
10298823578320597647156712 ~2017
10298912637761793475826312 ~2018
10299311054320598622108712 ~2017
1029984848632410...45794314 2024
10299870992320599741984712 ~2017
10300448168320600896336712 ~2017
10301311207120602622414312 ~2017
10301908799920603817599912 ~2017
10301938442320603876884712 ~2017
10302667481920605334963912 ~2017
10302901873120605803746312 ~2017
10303046288320606092576712 ~2017
10303230211120606460422312 ~2017
10303702229920607404459912 ~2017
10303912313920607824627912 ~2017
10304367728320608735456712 ~2017
10306117406320612234812712 ~2017
10306327787920612655575912 ~2017
10306654748320613309496712 ~2017
10307131664320614263328712 ~2017
10307864515120615729030312 ~2017
Exponent Prime Factor Dig. Year
10308109940320616219880712 ~2017
10309481852320618963704712 ~2017
10310032213120620064426312 ~2017
10310123792320620247584712 ~2017
10310357824161862146944712 ~2018
10310832578320621665156712 ~2017
10311415439361868492635912 ~2018
10312319113120624638226312 ~2017
10312658185120625316370312 ~2017
10313042509120626085018312 ~2017
10313941841920627883683912 ~2017
10314113609920628227219912 ~2017
10314719413120629438826312 ~2017
10314960497920629920995912 ~2017
10316001247120632002494312 ~2017
10316567801920633135603912 ~2017
10317310687120634621374312 ~2017
10318829316161912975896712 ~2018
10319123657920638247315912 ~2017
10319824099761918944598312 ~2018
10320819981761924919890312 ~2018
10321117681120642235362312 ~2017
10321308722320642617444712 ~2017
10321317151361927902907912 ~2018
1032321497772477...94648114 2024
Exponent Prime Factor Dig. Year
10323564847120647129694312 ~2017
10325386838320650773676712 ~2017
10325976251920651952503912 ~2017
1032714502012540...74944714 2024
10327335938320654671876712 ~2017
1032837050291412...47967315 2023
10329572723920659145447912 ~2017
10329623827120659247654312 ~2017
1032990718514778...38272715 2025
10330563697120661127394312 ~2017
10330652459920661304919912 ~2017
10330689179920661378359912 ~2017
10332643313920665286627912 ~2017
10333424096320666848192712 ~2017
10334563772320669127544712 ~2017
10334868692320669737384712 ~2017
10336764394162020586364712 ~2018
10336817576320673635152712 ~2017
10337087083362022522499912 ~2018
10337468234320674936468712 ~2017
10337967871120675935742312 ~2017
10339615952320679231904712 ~2017
10339792111120679584222312 ~2017
10340166887920680333775912 ~2017
10340719322320681438644712 ~2017
Exponent Prime Factor Dig. Year
10341228809920682457619912 ~2017
10341332155120682664310312 ~2017
10341469507362048817043912 ~2018
10341470204320682940408712 ~2017
10341912899920683825799912 ~2017
10341982331920683964663912 ~2017
10342528165120685056330312 ~2017
10343226472162059358832712 ~2018
10343966849920687933699912 ~2017
1034466182711284...89258315 2025
10344662503120689325006312 ~2017
10345131959920690263919912 ~2017
10345194399762071166398312 ~2018
10345877119120691754238312 ~2017
10347445429762084672578312 ~2018
1034849949591018...03965715 2023
10348570331920697140663912 ~2017
10348804202320697608404712 ~2017
10348805615920697611231912 ~2017
10348913797120697827594312 ~2017
10349508496162097050976712 ~2018
10349867117920699734235912 ~2017
10350309086320700618172712 ~2017
10351351313920702702627912 ~2017
10352263243120704526486312 ~2017
Home
4.768.925 digits
e-mail
25-05-04