Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12832575959925665151919912 ~2018
12833836025925667672051912 ~2018
12834523003125669046006312 ~2018
12835966853377015801119912 ~2019
12836553953925673107907912 ~2018
12837053318325674106636712 ~2018
12837970505925675941011912 ~2018
12838586065125677172130312 ~2018
12839076755925678153511912 ~2018
12839234125125678468250312 ~2018
12840271105125680542210312 ~2018
12840320591925680641183912 ~2018
12840323540325680647080712 ~2018
12840406085925680812171912 ~2018
12841806475777050838854312 ~2019
12841902253125683804506312 ~2018
12842409371925684818743912 ~2018
12843408991125686817982312 ~2018
12844526071125689052142312 ~2018
12845693365125691386730312 ~2018
12846590605777079543634312 ~2019
12847133353125694266706312 ~2018
12847779825777086678954312 ~2019
12849022028325698044056712 ~2018
12849140504325698281008712 ~2018
Exponent Prime Factor Dig. Year
12849850883925699701767912 ~2018
12851368633125702737266312 ~2018
12852078473925704156947912 ~2018
12852839173125705678346312 ~2018
12853527689925707055379912 ~2018
12853826419125707652838312 ~2018
12855805932177134835592712 ~2019
12856428422325712856844712 ~2018
12856685924325713371848712 ~2018
12858038408325716076816712 ~2018
12858229802325716459604712 ~2018
12858668441925717336883912 ~2018
12858866950177153201700712 ~2019
12860783017125721566034312 ~2018
12861102540177166615240712 ~2019
12861802591125723605182312 ~2018
12862900880325725801760712 ~2018
12863203846177179223076712 ~2019
12863393132325726786264712 ~2018
12863703637125727407274312 ~2018
12864614954325729229908712 ~2018
12864615379125729230758312 ~2018
12864954761925729909523912 ~2018
12865266673125730533346312 ~2018
12865601137125731202274312 ~2018
Exponent Prime Factor Dig. Year
12867023138325734046276712 ~2018
12867469685377204818111912 ~2019
12867583679925735167359912 ~2018
12868249435125736498870312 ~2018
12868908871125737817742312 ~2018
12870721313925741442627912 ~2018
12870792554325741585108712 ~2018
12871252976325742505952712 ~2018
12872717635377236305811912 ~2019
12873054827925746109655912 ~2018
12874212023925748424047912 ~2018
12874388306325748776612712 ~2018
12875088169125750176338312 ~2018
12875090747925750181495912 ~2018
1287512682374094...29936714 2023
12875429564325750859128712 ~2018
12877840322325755680644712 ~2018
12878521622325757043244712 ~2018
12880185131925760370263912 ~2018
12881689388325763378776712 ~2018
12881722651125763445302312 ~2018
12881747947377290487683912 ~2019
12882320126325764640252712 ~2018
12882719890177296319340712 ~2019
12883096068177298576408712 ~2019
Exponent Prime Factor Dig. Year
12883965932325767931864712 ~2018
12884110883925768221767912 ~2018
12884827381125769654762312 ~2018
12885582629925771165259912 ~2018
12889649101125779298202312 ~2018
12889858724325779717448712 ~2018
12889878903777339273422312 ~2019
12891104711925782209423912 ~2018
12891391499925782782999912 ~2018
12891400049925782800099912 ~2018
12892566611925785133223912 ~2018
12892593679125785187358312 ~2018
12893090036325786180072712 ~2018
12893520787377361124723912 ~2019
12893861678325787723356712 ~2018
12894227648325788455296712 ~2018
12894965195925789930391912 ~2018
12895631990325791263980712 ~2018
12896460746325792921492712 ~2018
12896671058325793342116712 ~2018
12897879989925795759979912 ~2018
1290053209572683...75905714 2024
12900532831125801065662312 ~2018
12901143283125802286566312 ~2018
12901146293925802292587912 ~2018
Home
4.724.182 digits
e-mail
25-04-13